Tìm GTLN và GTNN của hàm số: y=\(\frac{2}{\sqrt{3}\sin2x+\cos2x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
24.
\(cos\left(x-\dfrac{\pi}{2}\right)\le1\Rightarrow y\le3.1+1=4\)
\(y_{max}=4\)
26.
\(y=\sqrt{2}cos\left(2x-\dfrac{\pi}{4}\right)\)
Do \(cos\left(2x-\dfrac{\pi}{4}\right)\le1\Rightarrow y\le\sqrt{2}\)
\(y_{max}=\sqrt{2}\)
b.
\(\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{2}\)
\(\Leftrightarrow cos\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{3}+k2\pi\\x-\dfrac{\pi}{6}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(y=2\left(\dfrac{1}{2}sin2x+\dfrac{\sqrt{3}}{2}cos2x\right)=2sin\left(2x+\dfrac{\pi}{3}\right)\)
\(-1\le sin\left(2x+\dfrac{\pi}{3}\right)\le1\Rightarrow-2\le y\le2\)
\(y_{min}=-2\) khi \(sin\left(2x+\dfrac{\pi}{3}\right)=-1\Rightarrow x=-\dfrac{5\pi}{12}+k\pi\)
\(y_{max}=2\) khi \(sin\left(2x+\dfrac{\pi}{3}\right)=1\Rightarrow x=\dfrac{\pi}{12}+k\pi\)
\(y=\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)+3\)
Do \(sin\left(2x+\dfrac{\pi}{4}\right)\le1\Rightarrow y\le3+\sqrt{2}\)
\(\Rightarrow a=3;b=1\Rightarrow a+b=\)
21.
a) `2sin(x-30^@)-1=0`
`<=>sin(x-30^@)=1/2`
`<=> sin(x-30^@)=sin30^@`
`<=>[(x-30^@=30^@+k360^@),(x-30^@=180^@-30^@+k360^@):}`
`<=> [(x=60^@+k360^@),(x=180^@+k360^@):}`
b) `5sin^2x+3cosx+3=0`
`<=>5(1-cos^2x)+3cosx+3=0`
`<=>-5cos^2x+3cosx+8=0`
`<=>(cosx+1)(cosx=8/5)=0`
`<=>[(cosx=-1),(cosx=8/5\ (VN)):}`
`<=>x=180^@+k360^@`
22.
`-1<=sin2x<=1`
`<=>2<=3+sin2x<=4`
`=> y_(min)=2 ; y_(max)=4`
a.\(-1\le cosx\le1\Rightarrow-4\le y=3cosx-1\le2\)
b.-1 \(\le sinx\le1\)\(\Rightarrow3\le y=5+2sinx\le7\)
c.\(\sqrt{3-1}\le\sqrt{3+cos2x}\le\sqrt{3+1}\Rightarrow\sqrt{2}\le y\le2\)
d.\(y=\sqrt{5sinx-1}+2\le\sqrt{5.1-1}+2=4\)
\(y=\sqrt{5sinx-1}+2\ge2\) . " = " \(\Leftrightarrow sinx=\dfrac{1}{5}\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(\dfrac{1}{5}\right)+2k\pi\\x=\pi-arcsin\left(\dfrac{1}{5}\right)+2k\pi\end{matrix}\right.\) ( k thuộc Z )
Đặt \(sinx=t\left(t\in\left[-1;1\right]\right)\)
\(y=\left|sinx+cos2x\right|=\left|2sin^2x-sinx-1\right|\)
\(\Leftrightarrow y=\left|f\left(t\right)\right|=\left|2t^2-t-1\right|\)
\(f\left(-1\right)=2\Rightarrow y=2\)
\(f\left(1\right)=0\Rightarrow y=0\)
\(f\left(\dfrac{1}{4}\right)=-\dfrac{9}{8}\Rightarrow y=\dfrac{9}{8}\)
\(\Rightarrow y_{min}=0;y_{max}=2\)
Biến đổi :
\(\frac{8\cos x}{3\sin^2x+2\sqrt{3}\sin x\cos x+\cos x^2}=\frac{8\cos x}{\left(\sqrt{3}\sin x+\cos x\right)^2}\)
Giả sử :
\(8\cos x=a\left(\sqrt{3}\sin x+\cos x\right)+b\left(\sqrt{3}\cos x-\sin x\right)=\left(a\sqrt{3}-b\right)\sin x+\left(a+b\sqrt{3}\right)\cos x\)
Đồng nhất hệ số hai tử số, ta có hệ :
\(\begin{cases}a\sqrt{3}-b=0\\a+b\sqrt{3}=8\end{cases}\)\(\Leftrightarrow\begin{cases}a=2\\b=2\sqrt{3}\end{cases}\)
Khi đó \(f\left(x\right)=\frac{2}{\sqrt{3}\sin x-\cos x}-\frac{2\sqrt{3}\left(\left(\sqrt{3}\cos x-\sin x\right)\right)}{\sqrt{3}\sin x-\cos x}\)
Trong đó :
\(F\left(x\right)=\int\frac{2dx}{\sqrt{3}\sin x+\cos x}-\frac{2\sqrt{3}\left(\sqrt{3}\cos x-\sin x\right)dx}{\sqrt{3}\sin x+\cos x}=\frac{1}{2}\ln\left|\tan\left(\frac{x}{2}+\frac{\pi}{12}\right)\right|-\frac{2\sqrt{3}}{\sqrt{3}\sin x+\cos x}+C\)
Hàm này không tồn tại cả min lẫn max luôn (-1 và 1 không phải là 2 kết quả đúng)
Bạn có thể tính toán 2 giá trị hàm tại: \(x=-\frac{\pi}{12}+0.0001\) và \(x=-\frac{\pi}{12}-0.0001\) để kiểm chứng