K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 10 2020

Ta có:

\(\sqrt{x^2-6x+14}=\sqrt{x^2-6x+9+5}=\sqrt{\left(x-3\right)^2+5}\ge\sqrt{5}\)

\(\Rightarrow5-\sqrt{x^2-6x+14}\le5-\sqrt{5}\)

Vậy \(P_{max}=5-\sqrt{5}\) khi \(x=3\)

11 tháng 12 2021

là 12                                                                                                                    (mình đoán thế)

11 tháng 12 2021

Xét \(\sqrt{x^2-6x+10}=\sqrt{\left(x-3\right)^2+1}\ge1\)

=> B \(\le11\)

Dấu "=" <=> x = 3

13 tháng 7 2021

cau A thay = bằng cộng ạ

 

23 tháng 5 2016

\(p=\sqrt{\left(\sqrt{2}x-\frac{1}{\sqrt{2}}\right)^2+\frac{9}{2}}+\sqrt{\left(\sqrt{2}x-\frac{3}{\sqrt{2}}\right)^2+\frac{19}{2}}\ge\sqrt{\left(\frac{3}{\sqrt{2}}-\sqrt{2}x+\sqrt{2}x-\frac{1}{\sqrt{2}}\right)^2+\left(\frac{3+\sqrt{19}}{\sqrt{2}}\right)^2}=\sqrt{2+\frac{\left(3+\sqrt{19}\right)}{2}^2}\)

24 tháng 5 2016

bạn Nguyễn Hải Đăng ơi đó là công thức gì vậy? cho mình xin cái công thức tổng quát với mình chưa hiểu lắm

a: Ta có: \(x^2=3-2\sqrt{2}\)

nên \(x=\sqrt{2}-1\)

Thay \(x=\sqrt{2}-1\) vào A, ta được:

\(A=\dfrac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{\sqrt{2}-1}=7+5\sqrt{2}\)

21 tháng 8 2020

a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)

Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)

\(\Rightarrow A\ge\sqrt{1}=1\)

Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)

b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)

\(=\sqrt{2\left(x-1\right)^2+4}\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow B\ge\sqrt{4}=2\)

Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)

Vậy \(minB=2\Leftrightarrow x=1\)

21 tháng 8 2020

Mơn bạn nha

22 tháng 5 2016

√(x² + 2x + 5) = √[(x + 1)² + 4] ≥ 2. 
√(2x² + 4x + 3) = √[2(x + 1)² + 1] ≥ 1. 
=> √(x² + 2x + 5) + √(2x² + 4x + 3) ≥ 3. 
___Dấu bằng xảy ra khi và chỉ khi x = - 1. 
Vậy biểu thức đã cho có giá trị nhỏ nhất là 3

ai tích mình mình sẽ tích lại

22 tháng 5 2016

Bằng biến đổi tương đương, ta chứng minh được BĐT : \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)

Biểu diễn : \(A=\sqrt{2}\left(\sqrt{x^2-x+\frac{5}{2}}+\sqrt{x^2-3x+7}\right)\)

\(=\sqrt{2}\left(\sqrt{\left(x-\frac{1}{2}\right)^2+\left(\frac{3}{2}\right)^2}+\sqrt{\left(\frac{3}{2}-x\right)^2+\left(\sqrt{\frac{19}{4}}\right)^2}\right)\ge\sqrt{2}.\sqrt{\left(x-\frac{1}{2}+\frac{3}{2}-x\right)^2+\left(\frac{3}{2}+\frac{\sqrt{19}}{2}\right)^2}=\sqrt{16+3\sqrt{19}}\)=> Min A = \(\sqrt{16+3\sqrt{19}}\)

Dấu "=" bạn tự xét nhé!

21 tháng 5 2019

\(\sqrt{x^2-4x+4}=\sqrt{\left(x-2\right)^2}\)

\(\sqrt{\left(x-2\right)^2}\ge0\Leftrightarrow-\sqrt{\left(x-2\right)^2}\le0\Leftrightarrow4-\sqrt{\left(x-2\right)^2}\le4\)

\(\Leftrightarrow A\le4\)

Vậy giá trị lớn nhất của A là 4 tại x = 2

21 tháng 5 2019

lộn đề kìa bạn

NV
27 tháng 8 2021

\(P=\sqrt{\left(x-3\right)^2+4^2}+\sqrt{\left(y-3\right)^2+4^2}+\sqrt{\left(z-3\right)^2+4^2}\)

\(P\ge\sqrt{\left(x-3+y-3+z-3\right)^2+\left(4+4+4\right)^2}=6\sqrt{5}\)

\(P_{min}=6\sqrt{5}\) khi \(x=y=z=1\)

Mặt khác với mọi \(x\in\left[0;3\right]\) ta có:

\(\sqrt{x^2-6x+25}\le\dfrac{15-x}{3}\)

Thật vậy, BĐT tương đương: \(9\left(x^2-6x+25\right)\le\left(15-x\right)^2\)

\(\Leftrightarrow8x\left(3-x\right)\ge0\) luôn đúng

Tương tự: ...

\(\Rightarrow P\le\dfrac{45-\left(x+y+z\right)}{3}=14\)

\(P_{max}=14\) khi \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị