K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2020

Ta có: 

\(A=-1^2+2^2-3^2+4^2-...-\left(n-1\right)^2+n^2\) (đã sửa đề)

\(A=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left[n^2-\left(n-1\right)^2\right]\)

\(A=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(n-n+1\right)\left(n+n-1\right)\)

\(A=1+2+3+4+...+\left(n-1\right)+n\)

\(A=\frac{\left(n+1\right)\left[\left(n-1\right)\div1+1\right]}{2}=\frac{n\left(n+1\right)}{2}\)

25 tháng 10 2020

xin lỗi, nhưng bạn có thể giải đề này hộ mình được ko?

sao bạn phải sửa đề vậy?

25 tháng 6 2021

`(x^4-1)^2+(x^2+1)^2`

`=x^8-2x^4+1+x^4+2x^2+1`

`=x^8-x^4+2x^2+2`

25 tháng 6 2021

\(\left(x^4-1\right)^2+\left(x^2+1\right)^2=\left(x^2-1\right)^2.\left(x^2+1\right)^2+\left(x^2+1\right)^2\)

\(=\left(x^2+1\right)^2\left[\left(x^2-1\right)^2+1\right]=\left(x^2+1\right)^2\left(x^4-2x^2+2\right)\)

24 tháng 11 2023

\(\lim\limits_{n\rightarrow+\infty}\left(\sqrt[3]{n^3+n^2+n+1}-n\right)\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{n^3+n^2+n+1-n^3}{\sqrt[3]{\left(n^3+n^2+n+1\right)^2}+n\cdot\sqrt[3]{n^3+n^2+n+1}+n}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{n^2+n+1}{\sqrt[3]{\left[n^3\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}\right)\right]^2}+n^2\cdot\sqrt[3]{1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}}+n^2}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{n^2+n+1}{n^2\cdot\sqrt[3]{\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}\right)^2}+n^2\cdot\sqrt[3]{1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}}+n^2}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{1+\dfrac{1}{n}+\dfrac{1}{n^2}}{\sqrt[3]{\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}\right)^2+\sqrt[3]{1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}}+1}}\)

\(=\dfrac{1}{1+1+1}=\dfrac{1}{3}\)

b: \(\lim\limits_{n\rightarrow+\infty}\left(\sqrt{n^2+n}-\sqrt{n^2-n+1}\right)\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{n^2+n-n^2+n-1}{\sqrt{n^2+n}+\sqrt{n^2-n+1}}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{2n-1}{\sqrt{n^2+n}+\sqrt{n^2-n+1}}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{2-\dfrac{1}{n}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{1-\dfrac{1}{n}+\dfrac{1}{n^2}}}=\dfrac{2}{\sqrt{1}+\sqrt{1}}=1\)

20 tháng 3 2022

a, 25/12

b,  25/72

20 tháng 3 2022

a) = 3/4 + 4/3 = 25/12

b) = 3/8 - 16/9 = -101/72 * hình như hơi sai sai:"> *

24 tháng 11 2023

a: \(\lim\limits_{n\rightarrow+\infty}\dfrac{n^5+n^2-n+2}{\left(2n^3-1\right)\left(n^2+n+1\right)}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{1+\dfrac{1}{n^3}-\dfrac{1}{n^4}+\dfrac{2}{n^5}}{\left(\dfrac{2n^3}{n^3}-\dfrac{1}{n^3}\right)\left(\dfrac{n^2+n+1}{n^2}\right)}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{1+\dfrac{1}{n^3}-\dfrac{1}{n^4}+\dfrac{2}{n^5}}{\left(2-\dfrac{1}{n^3}\right)\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}\right)}\)

\(=\dfrac{1}{2\cdot1}=\dfrac{1}{2}\)

b: \(\lim\limits_{n\rightarrow+\infty}\dfrac{\sqrt{n^2-n+2}}{n+2}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{n\sqrt{1-\dfrac{1}{n}+\dfrac{2}{n^2}}}{n\left(1+\dfrac{2}{n}\right)}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{\sqrt{1-\dfrac{1}{n}+\dfrac{2}{n^2}}}{1+\dfrac{2}{n}}=\dfrac{\sqrt{1-0+0}}{1+0}=\dfrac{1}{1}=1\)

c: \(\lim\limits_{n\rightarrow+\infty}\dfrac{n-\sqrt[3]{n^2-n^3}}{n^2+n+1}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{\dfrac{n}{n^2}-\dfrac{\sqrt[3]{n^2-n^3}}{n^2}}{1+\dfrac{1}{n}+\dfrac{1}{n^2}}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{\dfrac{1}{n}-\sqrt[3]{\dfrac{1}{n^4}-\dfrac{1}{n^3}}}{1+\dfrac{1}{n}+\dfrac{1}{n^2}}=\dfrac{0}{1}=0\)

d: \(\lim\limits_{n\rightarrow+\infty}\left(n-\sqrt{n^2+n+1}\right)\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{n^2-n^2-n-1}{n+\sqrt{n^2+n+1}}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{-n-1}{n+\sqrt{n^2+n+1}}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{-1-\dfrac{1}{n}}{1+\sqrt{1+\dfrac{1}{n}+\dfrac{1}{n^2}}}=-\dfrac{1}{1+1}=-\dfrac{1}{2}\)

17 tháng 10 2021

undefined

Bài 3: 

a: Ta có: \(3x^2=75\)

\(\Leftrightarrow x^2=25\)

hay \(x\in\left\{5;-5\right\}\)

b: Ta có: \(2x^3=54\)

\(\Leftrightarrow x^3=27\)

hay x=3

Bài 2: 

b: Ta có: \(30-3\cdot2^n=24\)

\(\Leftrightarrow3\cdot2^n=6\)

\(\Leftrightarrow2^n=2\)

hay n=1

c: Ta có: \(40-5\cdot2^n=20\)

\(\Leftrightarrow5\cdot2^n=20\)

\(\Leftrightarrow2^n=4\)

hay n=2

d: Ta có: \(3\cdot2^n+2^n=16\)

\(\Leftrightarrow2^n\cdot4=16\)

\(\Leftrightarrow2^n=4\)

hay n=2

23 tháng 9 2021

a) \(2^3.2^2+7^4:7^2\)

\(=2^5+7^2\)

\(=32+49\)

b) \(6^2.47+6^2.53\)

\(=6^2\left(47+53\right)\)

\(=36.100\)

\(=3600\)

29 tháng 4 2022

a, \(1+\dfrac{3}{4}=\dfrac{7}{4}\)

b, \(\dfrac{4}{5}-\dfrac{3}{8}=\dfrac{32-15}{40}=\dfrac{17}{40}\)

c, \(1:\dfrac{2}{3}=\dfrac{1.3}{2}=\dfrac{3}{2}\)

d, \(\dfrac{2}{5}.\dfrac{5}{2}=1\)

29 tháng 4 2022

a)1 + 3/4=7/4

   b)4/5 -3/8=17/40

  c)1 : 2/3=3/2

  d)2/5 x 5/2=1

23 tháng 2 2023

`1`

`a, 1/2 +1/3= 3/6 + 2/6 =5/6`

`d, 1/3 +3/5= 5/15 + 9/15=14/15`

`c,4/5 +1/2= 8/10 + 5/10= 13/10`

`2`

`a,1/2 +1/4=2/4 +1/4=3/4`

`b, 2/3 +1/6 = 4/6+1/6=5/6`

`c, 7/12 +1/2=7/12+ 6/12= 13/12`

`3`

Giải

Cả `2` ngày đi tất cả số quãng đường là :

`1/4 +1/2 =1/4+ 2/4= 3/4 ( quãng đường)`

đ/s...

`@ yL`