tìm x,y,z biết
x^2 + 4x + y^2 -8y + 4z^2 +4z +21 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh BĐT sau:
Ta có: \(x\left(3-4x^2\right)=-4x^3+3x-1+1=1-\left(x+1\right)\left(2x-1\right)^2\le1\)
\(\Rightarrow\dfrac{4x^2}{x\left(3-4x^2\right)}\ge\dfrac{4x^2}{1}=4x^2\)
Tương tự và cộng lại:
\(Q\ge4\left(x^2+y^2+z^2\right)\ge4\left(xy+yz+zx\right)=3\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{2}\)
\(\Leftrightarrow\hept{\begin{cases}6x-5y=0\\8y-4z=0\\2x+y-z-4=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}6x=5y\\2y=z\\2x+y-z=4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}=\frac{z}{12}\\2x+y-z=4\end{cases}}\)
\(\Leftrightarrow\frac{x}{5}=\frac{y}{6}=\frac{z}{12}=\frac{2x+y-z}{10+6-12}=\frac{4}{4}=1\)
\(\Rightarrow x=5\)
\(y=6\)
\(z=12\)
\(x=\frac{4}{1+4}=\frac{4}{5}=0,8\) \(z=\frac{4}{1+4}=\frac{4}{5}=0,8\)
\(y=\frac{4}{1+4}=\frac{4}{5}=0,8\)
\(x^2+2x+y^2-6y+4z^2-4z+11=0\)
\(\Leftrightarrow x^2+2x+1+y^2-6y+9+4z^2-4z+1=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-3\right)^2+\left(2z-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-3=0\\2z-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=3\\z=\dfrac{1}{2}\end{matrix}\right.\)
\(x^2+2x+y^2-6y+4z^2-4z+11=0\\ \Rightarrow\left(x^2+2x+1\right)+\left(y^2-6y+9\right)+\left(4z^2-4z+1\right)=0\\ \Rightarrow\left(x+1\right)^2+\left(y-3\right)^2+\left(2z-1\right)^2=0\)
Vì \(\left(x+1\right)^2\ge0;\left(y-3\right)^2\ge0;\left(2z-1\right)^2\ge0\) mà \(\left(x+1\right)^2+\left(y-3\right)^2+\left(2z-1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-3\right)^2=0\\\left(2z-1\right)^2=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=-1\\y=3\\z=\dfrac{1}{2}\end{matrix}\right.\)
x2 + 4x + y2 - 8y + 4z2 + 4z + 21 = 0
<=> (x2 + 4x + 4) + (y2 - 8y + 16) + (4z2 + 4z + 1) = 0
<=> (x + 2)2 + (y - 4)2 + (2z + 1)2 = 0
<=> \(\hept{\begin{cases}x+2=0\\y-4=0\\2z+1=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-2\\y=4\\z=-\frac{1}{2}\end{cases}}\)
x2 + 4x + y2 - 8y + 4z2 + 4z + 21 = 0
⇔ ( x2 + 4x + 4 ) + ( y2 - 8y + 16 ) + ( 4z2 + 4z + 1 ) = 0
⇔ ( x + 2 )2 + ( y - 4 )2 + ( 2z + 1 )2 = 0
⇔ \(\hept{\begin{cases}x+2=0\\y-4=0\\2z+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=4\\z=-\frac{1}{2}\end{cases}}\)