\(\Delta ABC\) có G trọng tâm , I là trung điểm AG, K\(\varepsilon\)AB , AK=\(\frac{1}{5}\)AB.
a.Phân tích \(\overrightarrow{AI},\overrightarrow{AK},\overrightarrow{CI},\overrightarrow{CK}\) THEO \(\overrightarrow{a}=\overrightarrow{CA},\overrightarrow{b}=\overrightarrow{CB}\)
b.CMR: C,I ,K thẳng hàng
Lời giải:
a) Kéo dài $AG$ cắt $BC$ tại trung điểm $M$. Hiển nhiên $\overrightarrow{BM}, \overrightarrow{CM}$ là vecto đối nên tổng bằng vecto không.
Theo tính chất trọng tâm ta có:
$\overrightarrow{AI}=\frac{1}{2}\overrightarrow{AG}=\frac{1}{2}.\frac{2}{3}\overrightarrow{AM}=\frac{1}{3}\overrightarrow{AM}$
$=\frac{1}{6}(\overrightarrow{AM}+\overrightarrow{AM})=\frac{1}{6}(\overrightarrow{AB}+\overrightarrow{BM}+\overrightarrow{AC}+\overrightarrow{CM})$
$=\frac{1}{6}(\overrightarrow{AB}+\overrightarrow{AC})$
$=\frac{1}{6}(\overrightarrow{AC}+\overrightarrow{CB}+\overrightarrow{AC})$
$=\frac{1}{6}(2\overrightarrow{AC}+\overrightarrow{CB})$
$=\frac{-1}{3}\overrightarrow{CA}+\frac{1}{6}\overrightarrow{CB}$
$=\frac{-1}{3}\overrightarrow{a}+\frac{1}{6}\overrightarrow{b}$
----------------------
$\overrightarrow{AK}=\frac{1}{5}\overrightarrow{AB}=\frac{1}{5}(\overrightarrow{AC}+\overrightarrow{CB})=\frac{1}{5}(-\overrightarrow{CA}+\overrightarrow{CB})$
$=\frac{-1}{5}\overrightarrow{a}+\frac{1}{5}\overrightarrow{b}$
------------------
$\overrightarrow{CI}=\overrightarrow{CA}+\overrightarrow{AI}=\overrightarrow{a}-\frac{1}{3}\overrightarrow{a}+\frac{1}{6}\overrightarrow{b}$
$=\frac{2}{3}\overrightarrow{a}+\frac{1}{6}\overrightarrow{b}$
-------------------
$\overrightarrow{CK}=\overrightarrow{CA}+\overrightarrow{AK}=\overrightarrow{a}-\frac{1}{5}\overrightarrow{a}+\frac{1}{5}\overrightarrow{b}=\frac{4}{5}\overrightarrow{a}+\frac{1}{5}\overrightarrow{b}$
b)
Từ phần a ta thấy: $\overrightarrow{CI}=\frac{5}{6}\overrightarrrow{CK}$ nên $C,I,K$ thẳng hàng.
Hình vẽ: