Tính:
(2+1)(22+1)(24+1)...(2256+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tính tổng
a) 1 + 2 + 3 +.....+ 97 + 98 + 99 +100
b) 23 + 65 + 77 + 76 + 35 + 24
c) 45 + 78 + 65 + 22
a) số số hạng là :
(100-1):1+1=100 số
TBC số đầu và cuối là:
(100+1):2=50,5
=>tổng đó là :
100.50,5=5050
b)
23+65+77+76+35+24
=(23+77)+(65+35)+(76+24)
=100+100+100
=300
c)45+78+65+22
=(45+65)+(78+22)
=110+100
=210
\(E=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{2}{2256}\)
\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{47.48}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{47}-\dfrac{1}{48}\)
\(=\dfrac{1}{2}-\dfrac{1}{48}\)
\(=\dfrac{23}{48}\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{22}-\dfrac{1}{24}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{12-1}{24}=\dfrac{11}{48}\)
\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{10}+1\right)+1\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)...\left(2^{20}+1\right)+1\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{20}+1\right)+1\)
\(=2^{40}-1+1=2^{40}\)
Bài 3 : a) 3784 + 23 - 3785 - 15
= (3784 - 3785) + (23 - 15)
= -1 + 8
= 7
b) 21 + 22 + 23 + 24 - 11 - 12 - 13 - 14
= (21 - 11) + (22 - 12) + (23 - 13) + (24 - 14)
= 10 + 10 + 10 + 10
= 40
Bài 4 : a) -2001 + (1999 + 2001)
= -2001 + 1999 + 2001
= ( - 2001 + 2001 ) + 1999
= 0 + 1999
= 1999
B) (43 - 863) - (137 - 57)
= 43 - 863 - 137 - 57
= (43 - 57) + ( -863 - 137 )
= -14 + -1000
= -1014
Nhớ tick !!!
Đặt :
\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{99}}\)
\(\Leftrightarrow2A=3+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{98}}\)
\(\Leftrightarrow2A-A=\left(3+\dfrac{1}{2}+....+\dfrac{1}{2^{98}}\right)-\left(1+\dfrac{1}{2}+....+\dfrac{1}{2^{99}}\right)\)
\(\Leftrightarrow A=2-\dfrac{1}{2^{99}}\)
Vậy..
a) Ta có: \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
Đặt A = ( 2 + 1 )( 22 + 1 )( 24 + 1 )...( 2256 + 1 )
=> ( 2 - 1 )A = ( 2 - 1 )( 2 + 1 )( 22 + 1 )( 24 + 1 )...( 2256 + 1 )
=> A = ( 22 - 1 )( 22 + 1 )( 24 + 1 )...( 2256 + 1 )
= ( 24 - 1 )( 24 + 1 )...( 2256 + 1 )
= ( 2256 - 1 )( 2256 + 1 )
= 2512 - 1