K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2020

Ta có : 2x = 5y \(\Rightarrow\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{x^2}{25}=\frac{y^2}{4}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

\(\frac{x^2}{25}=\frac{y^2}{4}=\frac{x^2+y^2}{25+4}=\frac{133}{29}\)

Suy ra :

+) \(\frac{x^2}{25}=\frac{133}{29}\Leftrightarrow x^2=\frac{3325}{29}\Leftrightarrow x=\sqrt{\frac{3325}{29}}\approx10,7\)

+)\(\frac{y^2}{4}=\frac{133}{29}\Leftrightarrow y^2=\frac{532}{29}\Leftrightarrow y=\sqrt{\frac{532}{29}}\approx4,3\)

Vậy \(x\approx10,7;y\approx4,3\)

8 tháng 12 2023

Phân tích đa thức thành nhân tử

1: \(x^2-x-y^2-y\)

\(=\left(x^2-y^2\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-1\right)\)

2: \(x^2-y^2+x-y\)

\(=\left(x^2-y^2\right)+\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y\right)+\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y+1\right)\)

3: \(3x-3y+x^2-y^2\)

\(=\left(3x-3y\right)+\left(x^2-y^2\right)\)

\(=3\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(x+y+3\right)\)

4: \(5x-5y+x^2-y^2\)

\(=\left(5x-5y\right)+\left(x^2-y^2\right)\)

\(=5\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(5+x+y\right)\)

5: \(x^2-5x-y^2-5y\)

\(=\left(x^2-y^2\right)-\left(5x+5y\right)\)

\(=\left(x-y\right)\left(x+y\right)-5\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-5\right)\)

6: \(x^2-y^2+2x-2y\)

\(=\left(x^2-y^2\right)+\left(2x-2y\right)\)

\(=\left(x-y\right)\left(x+y\right)+2\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y+2\right)\)

7: \(x^2-4y^2+x+2y\)

\(=\left(x^2-4y^2\right)+\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y\right)+\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y+1\right)\)

8: \(x^2-y^2-2x-2y\)

\(=\left(x^2-y^2\right)-\left(2x+2y\right)\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

9: \(x^2-4y^2+2x+4y\)

\(=\left(x^2-4y^2\right)+\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)+2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y+2\right)\)

1 tháng 11 2021

a) \(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)=\left(x-y\right)\left(x+y-2\right)\)

b) \(=2\left(x+y\right)-x\left(x+y\right)=\left(x+y\right)\left(2-x\right)\)

c) \(=3x\left(x-y\right)+5\left(x-y\right)=\left(x-y\right)\left(3x+5\right)\)

d) \(=\left(x+y\right)^2-25=\left(x+y-5\right)\left(x+y+5\right)\)

e) \(=x\left(x^2-11x+30\right)\)

f) \(=x\left(x-3\right)+6\left(x-3\right)=\left(x-3\right)\left(x+6\right)\)

25 tháng 10 2021

\(a,=5\left(x-y\right)+a\left(x-y\right)=\left(5+a\right)\left(x-y\right)\\ b,=a\left(x+y\right)+b\left(x+y\right)=\left(a+b\right)\left(x+y\right)\\ c,=x\left(x+1\right)+a\left(x+1\right)=\left(x+a\right)\left(x+1\right)\\ d,Sửa:x^2y+xy^2-3x-3y=xy\left(x+y\right)-3\left(x+y\right)=\left(xy-3\right)\left(x+y\right)\\ e,=xy\left(x+1\right)-\left(x+1\right)=\left(xy-1\right)\left(x+1\right)\\ f,=x^2-4=\left(x-2\right)\left(x+2\right)\\ g,=\left(x+3\right)^2-y^2=\left(x-y+3\right)\left(x+y+3\right)\\ h,=\left(x+5\right)^2-y^2=\left(x-y+5\right)\left(x+y+5\right)\\ i,=\left(x-4\right)^2-24y^2=\left(x-2\sqrt{6}y-4\right)\left(x+2\sqrt{6}y+4\right)\)

a: =x^3+8-1+27x^3=28x^3+7

b: Sửa đề: (2+y)(y^2-2y+4)+(5-y)(25+5y+y^2)

=8+y^3+125-y^3

=133

22 tháng 10 2023

b: (x-y)(x^2-2x+y)

\(=x^3-2x^2+xy-x^2y+2xy-y^2\)

\(=x^3-2x^2-x^2y+3xy-y^2\)

c: \(\left(x^2-y\right)\left(x+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3+x^2y^2-xy-y^3-\left(x^3-y^3\right)\)

\(=x^2y^2-xy\)

d: \(3x\left(2xy-z\right)-5y\left(x^2-2\right)+3xz\)

\(=6x^2y-3xz-5x^2y+10y+3xz\)

\(=x^2y+10y\)

Mình tính thẳng ra nhé.

a) -A+B-C= -4x^2 + 2xy - 3y^2 + 3y + 7.

b) A+B-(-C)= -5y^2 = 2xy - 4x + 9y + 5.

23 tháng 11 2019

a, \(5x-xy+y^2-5y\)

\(=x\left(5-y\right)-y\left(5-y\right)\)

\(=\left(5-y\right)\left(x-y\right)\)

b, Có: \(x^2+2x+1-y^2\)

<=> \(\left(x+1\right)^2-y^2\)

<=> \(\left(x+1-y\right)\left(x+1+y\right)\)

Với x = 84; y = 15 ta có:

\(\left(x+1-y\right)\left(x+1+y\right)=\left(84+1-15\right)\left(84+1+15\right)\)

<=> \(70.100=7000\)

20 tháng 7 2017

\(a.2x^3+6x=2x\left(x^2+3\right)\)

\(=2x\left(x^2+3\right)-2x\left(x^2+3\right)\)

\(=\left(x^2+3\right)\left(2x-2x\right)\)

\(b.5x\left(x-2\right)-3x^2\left(x-2\right)\)

\(=\left(x-2\right)\left(5x-3x^2\right)\)

\(c.3x\left(x-5y\right)-2y\left(5y-x\right)\)

\(=3x\left(x-5y\right)+2\left(x-5y\right)\)

\(=\left(x-5y\right)\left(3x+2\right)\)

\(d.y^2\left(x^2+y\right)-x^3-xy\)

\(=y^2\left(x^2+y\right)-x\left(x^2+y\right)\)

\(=\left(x^2+y\right)\left(y^2-x\right)\)

e. Cái bài này ghi lại đàng hoàng xíu nha t k hỉu

\(f.3x^2\left(y^2-2x\right)-15x\left(2x-y^2\right)\)

\(=3x^2\left(y^2-2x\right)+15x\left(y^2-2x\right)\)

\(=\left(y^2-2x\right)\left(3x^2+15x\right)\)