K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2020

\(x+y+z=0< =>\left(x+y+z\right)^2=0< =>x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)

\(< =>x^2+y^2+z^2=0< =>x=y=z=0\)

\(B=\left(-1\right)^{2007}+0+1^{2009}=0\)

17 tháng 10 2020

x+y+z=0 

\(\Rightarrow\left(x+y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)

\(\Leftrightarrow x^2+y^2+z^2=0\)( vì xy+yz+zx=0)

Mà \(x^2+y^2+z^2\ge0\forall x,y,z\Rightarrow x=y=z=0\)

\(\Rightarrow B=\left(0-1\right)^{2007}+0^{2008}+\left(0+1\right)^{2009}\)

= -1+0+1=0

Vậy B=0

3 tháng 10 2016

\(x+y+z=0\)

\(\Rightarrow\left(x+y+z\right)^2=0\)

\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)

Mà \(xy+yz+xz=0\)

\(\Rightarrow x^2+y^2+z^2+2.0=0\)

\(\Rightarrow x^2+y^2+z^2=0\)

Mà \(x^2\ge0\)

\(y^2\ge0\)

\(z^2\ge0\)

\(\Rightarrow x^2+y^2+z^2\ge0\)

Mà \(x^2+y^2+z^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)

\(\Rightarrow B=\left(0-1\right)^{2007}+0^{2008}+\left(0+1\right)^{2009}\)

\(=\left(-1\right)^{2007}+0+1^{2009}\)

\(=-1+0+1\)

\(=0\)

Vậy ...

10 tháng 7 2015

\(0=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2+2.0\)

\(\Rightarrow x^2+y^2+z^2=0\Rightarrow x=y=z=0\)

\(B=\left(-1\right)^{2007}+0^{2008}+1^{2009}=0\)

1 tháng 10 2020

\(a,\)\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)\(\Leftrightarrow14+2\left(ab+bc+ac\right)=0\)\(\Rightarrow\left(ab+bc+ac\right)^2=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=49\)
Ta có: \(a^2+b^2+c^2=14\Rightarrow\left(a^2+b^2+c^2\right)=196\)\(\Leftrightarrow a^{^{ }4}+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=196\)\(\Leftrightarrow\)\(a^4+b^4+c^4=98\)

19 tháng 6 2015

\(0=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2+0\)

\(\Rightarrow x^2+y^2+z^2=0\)

\(\Rightarrow x=y=z=0\)

\(P=\left(-1\right)^{2003}+0^{2004}+1^{2005}=0\)

21 tháng 5 2019

Ta có :x + y + z = -1 \(\Rightarrow\)x + y =-( 1 + z )

 xy + yz + xz = 0 \(\Rightarrow\)xy = - z ( x + y ) = z ( z + 1 )

Tương tự : xz = y ( y + 1 ) ; yz = x . ( x + 1 )

\(M=\frac{z\left(z+1\right)}{z}+\frac{y\left(y+1\right)}{y}+\frac{x\left(x+1\right)}{x}=x+y+z+3=2\)

25 tháng 2 2018

x+y+z=0;xy+yz+xz=0

⇒(x+y+z)2=x2+y2+z2+2(xy+yz+xz)=0

⇒(x+y+z)2=x2+y2+z2=0

⇒x=y=z=0

⇒S=(x−1)2005+(y−1)2006+(z+1)2007=(−1)2005+(−1)2006+12007=1

20 tháng 2 2022

\(\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{x+z}{y}=\dfrac{x^2y+xy^2+y^2z+yz^2+x^2z+xz^2}{xyz}=\dfrac{-3xyz}{xyz}=-3\)

đề cho xy+yz+xz=0 nhân cả 2 vế với -z

=>-xyz-\(z^2\left(y+x\right)\)=0

=>-xyz=\(z^2x+z^2y\)

cmtt bạn nhân với -y và -z

=>-3xyz=\(x^2y+xy^2+y^2z+yz^2+x^2z+xz^2\)