Giải phương trình lượng giác:
24) \(\cos2x-\cos6x+4\left(3\sin x-4\sin^3x+1\right)=0\)
25) \(\sin^2x-2\sin x+2=\sin^23x\)
SGP.Capheny - Trang của SGP.Capheny - Học toán với OnlineMath
@SGP.Capheny
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow sin\left(\dfrac{x}{3}-\dfrac{pi}{4}\right)=sinx\)
=>x/3-pi/4=x+k2pi hoặc x/3-pi/4=pi-x+k2pi
=>2/3x=-pi/4+k2pi hoặc 4/3x=5/4pi+k2pi
=>x=-3/8pi+k3pi hoặc x=15/16pi+k*3/2pi
b: =>(sin3x-sin2x)(sin3x+sin2x)=0
=>sin3x-sin2x=0 hoặc sin 3x+sin 2x=0
=>sin 3x=sin 2x hoặc sin 3x=sin(-2x)
=>3x=2x+k2pi hoặc 3x=pi-2x+k2pi hoặc 3x=-2x+k2pi hoặc 3x=pi+2x+k2pi
=>x=k2pi hoặc x=pi/5+k2pi/5 hoặc x=k2pi/5 hoặc x=pi+k2pi
1.Pt \(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=sin\left(x+\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=cos\left(\dfrac{\pi}{6}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{\pi}{6}-x+k2\pi\\2x-\dfrac{\pi}{3}=x-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\\x=\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)
\(\Rightarrow x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\)\(\left(k\in Z\right)\)
2.\(sin^22x+cos^23x=1\)
\(\Leftrightarrow\dfrac{1-cos4x}{2}+\dfrac{1+cos6x}{2}=1\)
\(\Leftrightarrow cos6x=cos4x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{k\pi}{5}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Rightarrow x=\dfrac{k\pi}{5}\)\(\left(k\in Z\right)\) (Gộp nghiệm)
Vậy...
3. \(Pt\Leftrightarrow\left(sinx+sin3x\right)+\left(sin2x+sin4x\right)=0\)
\(\Leftrightarrow2.sin2x.cosx+2.sin3x.cosx=0\)
\(\Leftrightarrow2cosx\left(sin2x+sin3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin3x=-sin2x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\sin3x=sin\left(\pi+2x\right)\end{matrix}\right.\)(\(k\in Z\))
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pi+k2\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\)(\(k\in Z\))\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\) (\(k\in Z\))
Vậy...
4. Pt\(\Leftrightarrow\dfrac{1-cos2x}{2}+\dfrac{1-cos4x}{2}=\dfrac{1-cos6x}{2}\)
\(\Leftrightarrow cos2x+cos4x=1+cos6x\)
\(\Leftrightarrow2cos3x.cosx=2cos^23x\)
\(\Leftrightarrow\left[{}\begin{matrix}cos3x=0\\cosx=cos3x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=-k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)
Vậy...
\(\left(2cosx+\sqrt{3}\right)\left(cos2x+2sinx-\sqrt{3}\right)=1-4\left(1-cos^2x\right)\)
\(\Leftrightarrow\left(2cosx+\sqrt{3}\right)\left(cos2x+2sinx-\sqrt{3}\right)=4cos^2x-3\)
\(\Leftrightarrow\left(2cosx+\sqrt{3}\right)\left(cos2x+2sinx-\sqrt{3}\right)=\left(2cosx+\sqrt{3}\right)\left(2cosx-\sqrt{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=-\dfrac{\sqrt{3}}{2}\Rightarrow x=...\\cos2x+2sinx-\sqrt{3}=2cosx-\sqrt{3}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow cos^2x-sin^2x-2\left(cosx-sinx\right)=0\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(cosx+sinx\right)-2\left(cosx-sinx\right)=0\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(cosx+sinx-2\right)=0\)
\(\Leftrightarrow...\)
Với \(sinx=0\) không phải nghiệm (vế trái bằng 9, vế phải hiển nhiên nhỏ hơn 9)
Với \(sinx\ne0\):
\(\Rightarrow\left(3sinx-4sin^3x\right)\left(3-4sin^23x\right)=sinx-2sinx.cos10x\)
\(\Leftrightarrow sin3x\left(3-4sin^23x\right)=sinx-2sinx.cos10x\)
\(\Leftrightarrow3sin3x-4sin^33x=sinx-sin11x+sin9x\)
\(\Leftrightarrow sin9x=sinx-sin11x+sin9x\)
\(\Leftrightarrow sin11x=sinx\)
\(\Leftrightarrow...\)
a/ Hmm, bạn có nhầm lẫn chỗ nào ko nhỉ, nghiệm của pt này xấu khủng khiếp
b/ \(\Leftrightarrow sin\frac{5x}{2}-cos\frac{5x}{2}-sin\frac{x}{2}-cos\frac{x}{2}=cos\frac{3x}{2}\)
\(\Leftrightarrow2cos\frac{3x}{2}.sinx-2cos\frac{3x}{2}cosx=cos\frac{3x}{2}\)
\(\Leftrightarrow cos\frac{3x}{2}\left(2sinx-2cosx-1\right)=0\)
\(\Leftrightarrow cos\frac{3x}{2}\left(\sqrt{2}sin\left(x-\frac{\pi}{4}\right)-1\right)=0\)
c/ Do \(cosx\ne0\), chia 2 vế cho cosx ta được:
\(3\sqrt{tanx+1}\left(tanx+2\right)=5\left(tanx+3\right)\)
Đặt \(\sqrt{tanx+1}=t\ge0\)
\(\Leftrightarrow3t\left(t^2+1\right)=5\left(t^2+2\right)\)
\(\Leftrightarrow3t^3-5t^2+3t-10=0\)
\(\Leftrightarrow\left(t-2\right)\left(3t^2+t+5\right)=0\)
d/ \(\Leftrightarrow\sqrt{2}\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)=\frac{\sqrt{3}}{2}cos2x-\frac{1}{2}sin2x\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{3}\right)=-sin\left(2x-\frac{\pi}{3}\right)\)
Đặt \(x+\frac{\pi}{3}=a\Rightarrow2x=2a-\frac{2\pi}{3}\Rightarrow2x-\frac{\pi}{3}=2a-\pi\)
\(\sqrt{2}sina=-sin\left(2a-\pi\right)=sin2a=2sina.cosa\)
\(\Leftrightarrow\sqrt{2}sina\left(\sqrt{2}cosa-1\right)=0\)
(sinx + sin5x) + (sin2x + sin4x) + 4sin3x = 0
⇔ 2sin3x . cos2x + 2sin3x . cosx + 4sin3x = 0
⇔ 2sin3x (cos2x + cosx + 2sin3x) = 0
⇔ \(\left[{}\begin{matrix}sin3x=0\left(1\right)\\cos2x+cosx+2sin3x=0\left(2\right)\end{matrix}\right.\)
(1) ⇔ ...
(2) ⇔ \(2cos\dfrac{3x}{2}.cos\dfrac{x}{2}+4sin\dfrac{3x}{2}.cos\dfrac{3x}{2}=0\)
⇔ \(\left[{}\begin{matrix}cos\dfrac{3x}{2}=0\left(\alpha\right)\\cos\dfrac{x}{2}+2sin\dfrac{3x}{2}=0\left(\beta\right)\end{matrix}\right.\)
Giải \(\left(\alpha\right)\) quá đơn giản
Giải \(\left(\beta\right)\)
\(2\left(3sin\dfrac{x}{2}-4sin^3\dfrac{x}{x}\right)+cos\dfrac{x}{2}=0\)
⇔ \(-8sin^3\dfrac{x}{2}+6sin\dfrac{x}{2}\left(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}\right)+cos\dfrac{x}{2}.\left(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}\right)=0\)
⇔ \(-2sin^3\dfrac{x}{2}+6sin\dfrac{x}{2}.cos^2\dfrac{x}{2}+sin^2\dfrac{x}{2}.cos\dfrac{x}{2}+cos^3\dfrac{x}{2}=0\)
Xét \(x=k2\pi,k\in Z\) tức \(sin\dfrac{x}{2}=0\) có thỏa mãn phương trình không, nếu có kết luận về nghiệm
Dù trường hợp trên có thỏa mãn hay không thì tiếp tục xét trường hợp nữa là \(x\ne k2\pi,k\in Z\) tức \(sin\dfrac{x}{2}\ne0\). Rồi chia cả 2 vế phương trình lằng nhằng kia cho \(sin\dfrac{x}{2}\) và đưa về phương trình bậc 3 theo cot\(\dfrac{x}{2}\)
1a.
Đặt \(5x+6=u\)
\(cos2u+4\sqrt{2}sinu-4=0\)
\(\Leftrightarrow1-2sin^2u+4\sqrt{2}sinu-4=0\)
\(\Leftrightarrow2sin^2u-4\sqrt{2}sinu+3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinu=\dfrac{3\sqrt{2}}{2}>1\left(loại\right)\\sinu=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Rightarrow sin\left(5x+6\right)=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+6=\dfrac{\pi}{4}+k2\pi\\5x+6=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{6}{5}+\dfrac{\pi}{20}+\dfrac{k2\pi}{5}\\x=-\dfrac{6}{5}+\dfrac{3\pi}{20}+\dfrac{k2\pi}{5}\end{matrix}\right.\)
1b.
Đặt \(2x+1=u\)
\(cos2u+3sinu=2\)
\(\Leftrightarrow1-2sin^2u+3sinu=2\)
\(\Leftrightarrow2sin^2u-3sinu+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinu=1\\sinu=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(2x+1\right)=1\\sin\left(2x+1\right)=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=\dfrac{\pi}{2}+k2\pi\\2x+1=\dfrac{\pi}{6}+k2\pi\\2x+1=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}+\dfrac{\pi}{4}+k\pi\\x=-\dfrac{1}{2}+\dfrac{\pi}{12}+k\pi\\x=-\dfrac{1}{2}+\dfrac{5\pi}{12}+k\pi\end{matrix}\right.\)
30. \(\tan x+\cot x=2\sin\left(x+\frac{\pi}{4}\right)\)
ĐK: \(x\ne\frac{k\pi}{2}\)
pt <=> \(\frac{1}{\sin x.\cos x}=2\sin\left(x+\frac{\pi}{4}\right)\)
<=> \(\frac{1}{\sin2x}=\sin\left(x+\frac{\pi}{4}\right)\)
Đánh giá: \(-1\le\sin2x\le1\)
=> \(\orbr{\begin{cases}\frac{1}{\sin2x}\le-1\\\frac{1}{\sin2x}\ge1\end{cases}}\)
\(-1\le\sin\left(x+\frac{\pi}{4}\right)\le1\)
Như vậy dấu "=" xảy ra <=> \(\orbr{\begin{cases}\frac{1}{\sin2x}=\sin\left(x+\frac{\pi}{4}\right)=-1\\\frac{1}{\sin2x}=\sin\left(x+\frac{\pi}{4}\right)=1\end{cases}}\)
<=> \(\orbr{\begin{cases}\sin2x=\sin\left(x+\frac{\pi}{4}\right)=-1\\\sin2x=\sin\left(x+\frac{\pi}{4}\right)=1\end{cases}}\)
TH1: \(\sin2x=\sin\left(x+\frac{\pi}{4}\right)=-1\)
<=> \(\hept{\begin{cases}2x=-\frac{\pi}{2}+k2\pi\\x+\frac{\pi}{4}=-\frac{\pi}{2}+k2\pi\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{\pi}{4}+k\pi\\x=-\frac{3\pi}{4}+k2\pi\end{cases}}\)loại
TH2:
\(\sin2x=\sin\left(x+\frac{\pi}{4}\right)=1\)
<=> \(\hept{\begin{cases}2x=\frac{\pi}{2}+k2\pi\\x+\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{4}+k2\pi\end{cases}}\Leftrightarrow x=\frac{\pi}{4}+k2\pi\)
Vậy ...
29) \(\sin x-2\sin2x-\sin3x=2\sqrt{2}\)
<=> \(\left(\sin x-\sin3x\right)-2\sin2x=2\sqrt{2}\)
<=> \(-2.\sin x\cos2x-2\sin2x=2\sqrt{2}\)
<=> \(\sin x\cos2x+\sin2x=-\sqrt{2}\)
Ta có: \(\left(\sin x\cos2x+\sin2x\right)^2\le\left(\sin^2x+1\right)\left(\sin^22x+\cos^22x\right)=\sin^2x+1\le2\)
( theo bunhia)
=> \(-\sqrt{2}\le\sin x\cos2x+\sin2x\le\sqrt{2}\)
Dấu "=" xảy ra <=> \(\frac{\sin x}{1}=\frac{\cos2x}{\sin2x}\)(1) và \(\sin x\cos2x+\sin2x=-\sqrt{2}\)(2)
(1) <=> \(\frac{\sin x.\cos2x}{1}=\frac{\cos^22x}{\sin2x}\)=> (2) <=> \(\frac{\cos^22x}{\sin2x}+\sin2x=-\sqrt{2}\)
<=> \(\frac{1}{\sin2x}=-\sqrt{2}\)<=> \(\sin2x=-\frac{\sqrt{2}}{2}\)<=> \(\orbr{\begin{cases}x=-\frac{\pi}{8}+k\pi\\x=-\frac{3\pi}{8}+k\pi\end{cases}}\)
(1) <=> \(\sin x.\sin2x=\cos2x\)=> (2) <=> \(\sin x.\sin x.\sin2x+\sin2x=-\sqrt{2}\)
<=> \(\frac{\sin^2x}{2}+\frac{1}{2}=+1\Leftrightarrow\sin^2x=1\)=> \(\cos^2x=0\)loại vì \(\sin2x=-\frac{\sqrt{2}}{2}\)
Vậy pt vô nghiệm