timf x biet 1+2+3+...+ x =55
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+2x^2y^2+y^4-3x^2-4y^2+4=1\)
\(\Leftrightarrow\left(x^2+y^2\right)^2-4\left(x^2+y^2\right)+4=1-x^2\)
\(\Leftrightarrow\left(x^2+y^2-2\right)^2=1-x^2\)
Do \(1-x^2\le1\) \(\forall x\)
\(\Rightarrow-1\le x^2+y^2-2\le1\)
\(\Rightarrow1\le x^2+y^2\le3\)
\(A_{min}=1\) khi \(\left\{{}\begin{matrix}x=0\\y=\pm1\end{matrix}\right.\)
\(A_{max}=3\) khi \(\left\{{}\begin{matrix}x=0\\y=\pm\sqrt{3}\end{matrix}\right.\)
\(\left(x-1\right)^2+\left(y+3\right)^2=0\left(1\right)\)
Ta thấy \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0,\forall x\\\left(y+3\right)^2\ge0,\forall y\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left(x+1\right)^2=0^2\\\left(y+3\right)^2=0^2\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x+1=0\\y+3=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\)
côn thức[ số đầu + số cuối ] . các số hạng / 2 = kết quả
[1+x].b/2=55
=55.2=110
=[1+10].10/2=55
=x=10
tớ chỉ có thể giải thích thế này thôi nên thứ lỗi