2x = 5y và x - 8y = 12
Các bạn giúp mình với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
điều kiện <=>\(\begin{cases}\frac{2x+7}{4}=\frac{2x-5y}{9}\\\frac{2x+7}{4}=\frac{3-5y}{7}\end{cases}\)
<=>\(\begin{cases}14x+49=12-20y\\18x+63=8x-20y\end{cases}\) <=>\(\begin{cases}14x+20y=-37\\14x+20y=-63\end{cases}\) hệ phương trình vô nghiệm=> không có giá trị x,y thỏa mãn
\(x^2-4xy+5y^2+2x-8y+5=\left(x-2y+1\right)^2+\left(y-2\right)^2\ge0\forall x,y\).
x2 - 4xy + 5y2 + 2x - 8y + 5
= x2 + 4y2 + 1 - 4xy + 2x - 4y + y2 - 2y + 1
= (x - 2y + 1)2 + (y - 1)2 ≥ 0
\(\hept{\begin{cases}2x=5y\\3x+4y=46\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{5}}\\3x+4y=46\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{3x}{\frac{3}{2}}=\frac{4y}{\frac{4}{5}}\\3x+4y=46\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3x}{\frac{3}{2}}=\frac{4y}{\frac{4}{5}}=\frac{3x+4y}{\frac{3}{2}+\frac{4}{5}}=\frac{46}{\frac{23}{10}}=20\)
\(\frac{3x}{\frac{3}{2}}=20\Rightarrow3x=30\Rightarrow x=10\)
\(\frac{4y}{\frac{4}{5}}=20\Rightarrow4y=16\Rightarrow y=4\)
2.x=5.y = \(\frac{X}{5}\)=\(\frac{Y}{2}\)=\(\frac{3x+4Y}{3.5+4.2}\)=\(\frac{46}{23}\)=2
\(\frac{X}{5}\)=2 => x=2.5=10
\(\frac{Y}{2}\)=2 =>y=2.2=4
a)2x=3y 5y=7z
=>\(\frac{x}{3}=\frac{y}{2}=\frac{x}{21}=\frac{y}{14}\) =>\(\frac{y}{7}=\frac{z}{5}=\frac{y}{14}=\frac{z}{10}\)
=>\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
=>\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}\)\(=\frac{30}{-15}=-2\)
\(\frac{x}{21}=-2=>x=-2.21=-42\)
\(\frac{y}{14}=-2=>y=-2.14=-28\)
\(\frac{z}{10}=-2=>z=-2.10=-20\)
a)\(\frac{x^2}{16}=\frac{24}{25}\Rightarrow x^2=\frac{16.24}{25}=\frac{384}{25}\)
\(\Rightarrow x=\frac{8\sqrt{6}}{25}\)hoặc \(x=-\frac{8\sqrt{6}}{25}\)
b)\(\frac{x}{y}=\frac{9}{10}\Leftrightarrow\frac{x}{9}=\frac{y}{10}=\frac{y-x}{10-9}=\frac{120}{1}=120\)
\(\Rightarrow x=120.9=1080\)và \(y=120.10=1200\)
c)\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=-\frac{32}{8}=-4\)
\(\Rightarrow x=-4.3=-12\)và \(y=-4.5=-20\)
d)\(4x=5y\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{2x}{10}=\frac{y}{4}=\frac{y-2x}{4-10}=\frac{-5}{-6}=\frac{5}{6}\)
\(\Rightarrow x=\frac{5}{6}.5=\frac{25}{6}\)và \(y=\frac{5}{6}.4=\frac{10}{3}\)
a) \(\frac{x^2}{16}=\frac{24}{25}\)
\(x^2=\frac{24}{25}\cdot16\)
\(x^2=\frac{384}{25}\)
\(x=\sqrt{\frac{384}{25}}=\frac{8\sqrt{6}}{5}\)
Vậy \(x=\frac{8\sqrt{6}}{5}\)
b) \(\frac{x}{y}=\frac{9}{10}\Rightarrow\frac{y}{10}=\frac{x}{9}\)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{y}{10}=\frac{x}{9}=\frac{y-x}{10-9}=120\)
\(\Rightarrow y=120\cdot10=1200\)
\(x=120\cdot9=1080\)
Vậy y= 1200 , x= 1080
c) Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{-32}{8}=-4\)
\(\Rightarrow x=-4\cdot3=-12\)
\(y=-4\cdot5=-20\)
Vậy x=-12 và y= -20
d) \(4x=5y\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{y}{4}=\frac{2x}{10}\)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{y}{4}=\frac{2x}{10}=\frac{y-2x}{4-10}=\frac{-5}{-6}=\frac{5}{6}\)
\(\Rightarrow y=\frac{5}{6}\cdot4=\frac{10}{3}\)
\(x=\frac{5}{6}\cdot5=\frac{25}{6}\)
Vậy y= 10/3 và x=25/6
\(x-8y=12\Leftrightarrow2x-16y=24\Leftrightarrow5y-16y=24\Leftrightarrow-11y=24\)
\(\Leftrightarrow y=-\frac{24}{11}\Leftrightarrow x=-\frac{60}{11}\)