ai giải hộ e câu b zới ak
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\dfrac{9x}{x}:\left[\dfrac{x\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)^2}-\dfrac{4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\right]\\ A=9:\left(\dfrac{x}{\sqrt{x}-2}-\dfrac{4}{\sqrt{x}-2}\right)=9:\dfrac{x-4}{\sqrt{x}-2}\\ A=\dfrac{9\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{9}{\sqrt{x}+2}\\ b,x=11+2\sqrt{30}\Leftrightarrow\sqrt{x}=\sqrt{6}+\sqrt{5}\\ \Leftrightarrow A=\dfrac{9}{\sqrt{6}+\sqrt{5}+2}=\dfrac{9\left(\sqrt{6}+\sqrt{5}-2\right)}{7+2\sqrt{30}}\\ \Leftrightarrow A=\dfrac{9\left(\sqrt{6}+\sqrt{5}-2\right)\left(2\sqrt{30}-7\right)}{71}\)
\(c,A+\sqrt{x}=\dfrac{9}{\sqrt{x}+2}+\sqrt{x}=\dfrac{9}{\sqrt{x}+2}+\left(\sqrt{x}+2\right)-2\\ A+\sqrt{x}\ge2\sqrt{\dfrac{9\left(\sqrt{x}+2\right)}{\sqrt{x}+2}}-2=2\sqrt{9}-2=4\left(đpcm\right)\)
c: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)
Do đó: AMHN là hình chữ nhật
Suy ra: AH=MN
b, Áp dụng t/c dtsbn:
\(x:y:z=2:5:7\Rightarrow\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x-y+z}{2-5+7}=\dfrac{25}{4}\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{25}{2}\\y=\dfrac{125}{4}\\z=\dfrac{175}{4}\end{matrix}\right.\)
c, Áp dụng t/c dstbn:
\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\\ \Rightarrow\left\{{}\begin{matrix}x=16\\y=24\\z=30\end{matrix}\right.\)
d, Áp dụng t/c dstbn:
\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-2z}{8-12-2\cdot15}=\dfrac{36}{-34}=-\dfrac{18}{17}\\ \Rightarrow\left\{{}\begin{matrix}x=-\dfrac{144}{17}\\y=-\dfrac{216}{17}\\z=-\dfrac{270}{17}\end{matrix}\right.\)
e, Áp dụng t/c dtsbn:
\(x:y:z=3:5:\left(-2\right)\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}=\dfrac{5x-y+3z}{3\cdot5-5+3\left(-2\right)}=\dfrac{12}{4}=3\\ \Rightarrow\left\{{}\begin{matrix}x=9\\y=15\\z=-6\end{matrix}\right.\)
giải kĩ hộ e câu b ak đừng lm ngắn gọn quá
b: Xét ΔAHC vuông tại H có
\(AH^2+HC^2=AC^2\)
nên \(AC^2-HC^2=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AH^2=AN\cdot AC\left(2\right)\)
Từ (1) và (2) suy ra \(AN\cdot AC=AC^2-HC^2\)