Cho hinh thang ABCD (AB//CD). Các tia phân giác của góc ngoài đinh A và D cắt nhau ở Q. Các tia phân giác tại điểm B và C cắt nhau tai K. a) Chúng minh QK//AB//CD
b)Tính chu vi hinh thang ABCD biet QK=10cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : KABˆ=KADˆKAB^=KAD^ ( AK là tia phân giác A^A^ )
Mà KABˆ=AKDˆKAB^=AKD^ ( so le trong )
\Rightarrow AKDˆ=KADˆAKD^=KAD^
\Rightarrow △△ ADK cân tại D
\Rightarrow AD = KD (1)
Lại có : KBAˆ=KBCˆKBA^=KBC^ ( BK là tia phân giác B^B^ )
Mà KBAˆ=BKCˆKBA^=BKC^ ( so le trong )
\Rightarrow KBCˆ=BKCˆKBC^=BKC^
\Rightarrow △△ BCK cân tại C
\Rightarrow BC = CK (2)
Cộng (1) và (2) có :
AD + BC = KD + CK
\Rightarrow AD+BCTổng hai cạnh bên=CDCạnh đáy
a. Gọi M' và N' là giao điểm của tia AM và BN với CD.
Ta có: ∠(M') = ∠A2(sole trong)
∠A1= ∠A2(gt)
⇒ ∠(M') = ∠A1nên ΔADM' cân tại D
* DM là phân giác của ∠(ADM' )
Suy ra: DM là đường trung tuyến (tính chất tam giác cân)
⇒ AM = MM'
∠(N') = ∠B1nên ΔBCN' cân tại C.
* CN là phân giác của ∠(BCN')
Suy ra: CN là đường trung tuyến (tính chất tam giác cân)
⇒ PN = NN'
Suy ra: MN là đường trung bình của hình thang ABN'M'
⇒ MN = M'N' (tính chất đường trung hình hình thang)
Hay MN//CD
b)MN=AB+M′N′/2 (tính chất đường trung bình của hình thang)
⇒MN=AB+M′D+CD+CN′/2(1)
Mà M′D=AD,CN′=BC. Thay vào (1)
MN=AB+AD+CD+BC/2=a+d+c+b/2
a) Gọi M và N lần lượt là giao điểm của AE, BF với CD.
Ta có: A D E ^ = 1 2 D ^ ngoài, D A E ^ = 1 2 A ^ ngoài.
Mà A ^ ngoài + D ^ ngoài = 1800 (do AB//CD)
⇒ A D E ^ + D A E ^ = 90 0 , tức là tam giác ADE vuông tại E.
Khi đó, tam giác ADM cân tại D (do có DE vừa là đường phân giác, vừa là đường cao) và E là trung điểm của AM.
Chứng minh tương tự, ta được F olaf trung điểm của BN.
Từ khó, suy ra EF là đường trung bình của hình thang ABNM và ta được ĐPCM
b) Từ ý a), EF = 1 2 ( A B + B C + C D + D A )
a:
góc AMD=180 độ-góc MAD-góc MDA
\(=180^0-\dfrac{180^0-\widehat{BAD}}{2}-\dfrac{180^0-\widehat{ADC}}{2}\)
\(=180^0-\dfrac{1}{2}\widehat{ADC}-90^0+\dfrac{1}{2}\widehat{ADC}=90^0\)
Gọi giao của AM với DC là M'
Xét ΔDM'A có
DM là đường cao, là đường phân giác
nên ΔDM'A cân tại D
=>M là trung điểm của AM'
Gọi giao của BN với DC là N'
Ta có: \(\widehat{BNC}=180^0-\widehat{NBC}-\widehat{NCB}\)
\(=180^0-\dfrac{180^0-\widehat{ABC}}{2}-\dfrac{180^0-\widehat{BCD}}{2}\)
\(=180^0-90^0+\dfrac{1}{2}\widehat{ABC}-90^0+\dfrac{1}{2}\widehat{BCD}\)
=90 độ
Xét ΔCN'B có
CN vừa là đường cao, vừa là phân giác
nên ΔCN'B cân tại C
=>N là trug điểm của BN'
Xét hình thang ABN'M' có
M,N lần lượt là trung điểm của AM' và BN'
nen MN là đường trung bình
=>MN//CD//AB
b: MN=(AB+M'N')/2
=(AB+M'D+CD+CN')/2
mà M'D=AD và CN'=CB
nên MN=(AB+CD+AD+CB)/2
a) Gọi M và N lần lượt là giao điểm của AE, BF với CD.
Ta có: A D E ^ = 1 2 D ^ ngoài, D A E ^ = 1 2 A ^ ngoài.
Mà A ^ ngoài + D ^ ngoài = 1800 (do AB//CD)
⇒ A D E ^ + D A E ^ = 90 0 , tức là tam giác ADE vuông tại E.
Khi đó, tam giác ADM cân tại D (do có DE vừa là đường phân giác, vừa là đường cao) và E là trung điểm của AM.
Chứng minh tương tự, ta được F olaf trung điểm của BN.
Từ khó, suy ra EF là đường trung bình của hình thang ABNM và ta được ĐPCM
b) Từ ý a), EF = 1 2 ( A B + B C + C D + D A )
Lưu ý: Có thể sử dụng tính chất đường phân giác để chứng minh
a/ AB //CD (với AB < CD) phân giác góc ngoài tại và D cắt nhau tại M, --> AM vuông góc MD (phân giác của hai góc bù nhau), AM kéo dài cắt DC tại Q Trong tg AQD có DM phân giác và đường cao -->
tg ADQ cân ại D --> M trung điểm AQ
--> tương tự BN và BN vuông góc CN và BN kéo dài cắt DC tại R --> tg BCR cân tại C và N trung điểm BR --> MN đườn trung bình của tg của hình thang ABRQ --> MN // AB --> MN // CD
b/ Trong hình hang ARBQ có 2MN = AB + QR (MN đường trung bình của hình thang ARBQ)
--> 16 = AB + QD + CD + CP = AB + AD + CD + BC ( vì QD = AD, CR = BC)
--> Chu vi hình thang = 16 cm