1.Tìm x y
3 mũ (x -1) + 5 x 3 mũ (x - 1) = 162
2.Rút gọn B = 3 mũ 100 - 3 mũ 99 + 3 mũ 98 - 3 mũ 97 + .... + 3 mũ 2 - 3 + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1
ta có : n+4 = (n+1)+3
=>n+1+3 chia hết cho n+1
vì n+1 chia hết cho n+1
=>3 chia hết cho n+1
=> n+1 chia hết cho 3
=> n+1 thuộc Ư 3 =[1;3]
=> n+1=1 n+1=3
n =1-1 n =3-1
n =0 n =2
vậy n thuộc [0;2]
Ta có :
B = 2100 - 299 + 298 - 297 + ... + 22 - 2 + 1
=> B = ( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 )
=> 22B = 2 . [ ( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 ) ]
=> 4B = ( 2102 + 2100 + ... + 22 ) - ( 2101 + 299 + ... + 23 )
=> 4B - B = [( 2102 + 2100 + ... + 22 ) - ( 2101 + 299 + ... + 23 )] - [( 2100 + 298 + ... + 22 + 1 ) - ( 299 + 297 + ... + 2 )]
=> 3B = ( 2102 - 1 ) + ( 2 - 2101 )
=> 3B = 2101 - 1
=> B = \(\frac{2^{101} - 1}{3}\)
gọi dãy số là A, ta có:
A = 2100 - 299 - ...... - 21
2A = 2101 - 2100 - .... - 22
2A = ( 2101 - ... - 22 ) - ( 2100 - ... - 2 )
A = 2101 - 2
a)64:2mũ5×30×4
= 64 : 32 x 30 x 4
= 240
b)3 mũ 2× 5 - 2 mũ 2×7+2 mũ 0 × 5
= 9 x 5 - 4 x 7 + 1 x 5
= 45 - 28 + 5
= 22
c)2 mũ 3-5 mũ 3÷5 mũ 2 + 12×2 mũ 2
= 8 - 125 : 25 + 12 x 4
= 8 - 5 + 48
= 51
d)2[(7-3 mũ 3÷3 mũ 2) chia 2 mũ 2 + 99]-100
= 2[( 7 - 27 : 9) : 4 + 99] - 100
= 2[4 : 4 + 99] - 100
= 2. 100 - 100
= 200 - 100
= 100
e)4[(3 + 3^7:3^4)chia 10 + 97]-300
= 4[( 3 + 3^3) : 10 + 97] - 300
= 4[ 30 : 10 + 97 ] - 300
= 4. 100 - 300
= 400 - 300
= 100
f)2^2 x 5 [(5 mũ 2 cộng 2 mũ 3) chia 11 - 2] - 3^2 x 2
= 4 x 5 [ (25 + 8 ) : 11 - 2] - 9 x 2
= 20 [ 33 : 11 - 2] - 18
= 20. 1 - 18
= 20 - 18
= 2
Lời giải :
1. \(\left(\frac{1}{2}a+b\right)^3+\left(\frac{1}{2}a-b\right)^3\)
\(=\frac{a^3}{8}+\frac{3a^2b}{4}+\frac{3ab^2}{2}+b^3+\frac{a^3}{8}-\frac{3a^2b}{4}+\frac{3ab^2}{2}-b^3\)
\(=\frac{a^3}{4}+3ab^2\)
Lời giải :
2. \(x^3-3x^2+3x-1=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy...
1) \(\left(\frac{1}{2}a+b\right)^3+\left(\frac{1}{2}a-b\right)^3\)
\(=\left(\frac{a}{2}+b\right)^2+\left(\frac{a}{2}-b\right)^2\)
\(=\left(\frac{a}{2}+b\right)\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{b}b+b^2\right]+\left(\frac{a}{2}-b\right)\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)
\(=\frac{a}{2}\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{2}b+b^2\right]+b\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{2}b+b^2\right]+\frac{a}{2}\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)\(-b\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)
\(=\frac{a^3}{8}+\frac{a^2b}{2}+\frac{ab^2}{2}+\frac{ba^2}{4}+b^2a+b^3+\frac{a^3}{8}-\frac{a^2b}{2}+\frac{ab^2}{2}-\frac{ba^2}{4}+b^2a-b^3\)
\(=\frac{a^3}{4}+3ab^2\)
2) \(x^3-3x^2+3x-1=0\)
\(\Leftrightarrow x^3-3x^2.1+3.x.1^2-1^3=0\)
\(\Leftrightarrow\left(x+1\right)^3=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=0-1\)
\(\Rightarrow x=-1\)
3) \(A=\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(A=64x^3-32x^2+4x-16x^2+8x-1-64x^3-12x+48x^2+9\)
\(A=8\)
Vậy: biểu thức không phụ thuộc vào biến
1) \(\left(x+5\right)^3-x^3-125\)
\(=\left(x+5\right)\left(x^2+2x.5+5^2\right)-x^3-125\)
\(=x\left(x^2+2x.5+5^2\right)+5\left(x^2+2x.5+5^2\right)-x^3-125\)
\(=x^3+10x^2+25x+5x^2+50x+125-x^3-125\)
\(=15x^2+75x\)
2) \(\left(x-2\right)^3+6\left(x+1\right)^2-x^3+12=0\)
\(\Leftrightarrow x^3-4x^2+4x-2x^2+8x-8+6x^2+12x+6-x^3+12=0\)
\(\Leftrightarrow24x+10=0\)
\(\Leftrightarrow24x=0-10\)
\(\Leftrightarrow24x=-10\)
\(\Leftrightarrow x=-\frac{10}{24}=-\frac{5}{12}\)
\(\Rightarrow x=-\frac{5}{12}\)
3) \(\left(x-1\right)^3-x^3+3x^2-3x+1\)
\(=\left(x-1\right)\left(x^2-2x+1\right)-x^3+3x^2-3x+1\)
\(=x\left(x^2-2x+1\right)-\left(x^2-2x+1\right)-x^3+3x^2-3x+1\)
\(=x^3-2x^2+x-x^2+2x-1-x^3-3x^2-3x+1\)
\(=0\)
Vậy: biểu thức không phụ thuộc vào biến
1/ 3x-1 + 5.3x-1 = 162
3x-1(1 + 5) = 162
3x-1 = \(\frac{162}{6}\)
3x-1 = 27
3x-1 = 33
x - 1 = 3
x = 4
2/ B = 3100 - 399 + 398 - 397 + ... + 32 - 3 + 1
\(\Rightarrow\) 3B = 3.3100 - 3.399 + 3.398 - 3.397 + ... + 3.32 - 3.3 + 3.1
= 3101 - 3100 + 399 - 398 + ... + 33 - 32 + 3
Ta có:
4B = 3B + B = (3101 - 3100 + 399 - 398 + ... + 33 - 32 + 3) + (3100 - 399 + 398 - 397 + ... + 32 - 3 + 1)
= 3101 + 3100 - 3100 + 399 - 399 + 398 - 398 + ... + 3 - 3 + 1
= 3101 + 1
\(\Rightarrow\) B = \(\frac{3^{101}+1}{4}\)
Cảm ơn bạn nhiều nha