Cho tam giác ABC có diện tích bằng 80cm^2. Gọi M là trung điểm của BC, N là điểm nằm trên đoạn thẳng AM sao cho AN=3AM và P là giao điểm BN và AC . Tính S tam giác ANP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, tam giác ABC vuông tại B có:
\(BA^2+BC^2=AC^2\)(đ/lí py ta-go)
hay 152+ BC2=172
=> BC2=172-152
=> BC2= 289-225
=> BC2=6
=> BC=\(\sqrt{64}=8\)(cm)
b, Xét \(\Delta BAM\)và \(\Delta CNM\)có:
MC=MA(gt)
\(\widehat{M_1}=\widehat{M_2}\)(đối đỉnh)
MB=MC(M là trung điểm BC)
\(\Rightarrow\Delta MBA=\Delta MCN\left(c.g.c\right)\)
\(\Rightarrow\widehat{C_1}=\widehat{B}=90^0\)(2 góc t/ư)
=> \(CN\perp CB\)(đpcm)
\(S_{ABM}=S_{ACM}=12\left(cm^2\right)\)
=>\(S_{BNM}=\dfrac{2}{3}\cdot12=8cm^2;S_{NMC}=8cm^2\)
=>\(S_{BNC}=16\left(cm^2\right)\)
Giải:
Ta có : CN = 3NA hay CA = 4NA
SAND = 1/4SADC (2 tam giác này có CA=4NA, chung đường cao kẻ từ D).
=> SADC = 10 x 4 = 40 (cm2)
Ta lại có SAMC = 1/2SAMB (BM=2MC, chung đường cao kẻ từ A). Mà 2 tam giác này có AM chung nên đường cao kẻ từ B gấp 2 lần đường cao kẻ từ C xuống AM.
Hai đường cao này cũng là 2 đường cao của 2 tam giác ADB và ADC.
SADC = 1/2SADB => SADB = 40 x 2 = 80 (cm2)
SANB = SAND + SADB = 10 + 80 = 90 (cm2)
Mà SANB = 1/4SABC (2 tam giác này có CA=4NA, chung đường cao kẻ từ A).
Vậy SABC = 90 x 4 = 360 (cm2)
Ta có CN = 3NA hay CA = 4NA
SAND = 1/4SADC (2 tam giác này có CA=4NA, chung đường cao kẻ từ D).
=> SADC = 10 x 4 = 40 (cm2)
Ta lại có SAMC = 1/2SAMB (BM=2MC, chung đường cao kẻ từ A). Mà 2 tam giác này có AM chung nên đường cao kẻ từ B gấp 2 lần đường cao kẻ từ C xuống AM.
Hai đường cao này cũng là 2 đường cao của 2 tam giác ADB và ADC
SADC = 1/2SADB => SADB = 40 x 2 = 80 (cm2)
SANB = SAND + SADB = 10 + 80 = 90 (cm2)
Mà SANB = 1/4SABC (2 tam giác này có CA=4NA, chung đường cao kẻ từ A).
Vậy SABC = 90 x 4 = 360 (cm2)
Ta có CN = 3NA hay CA = 4NA
SAND = 1/4SADC (2 tam giác này có CA=4NA, chung đường cao kẻ từ D).
=> SADC = 10 x 4 = 40 (cm2)
Ta lại có SAMC = 1/2SAMB (BM=2MC, chung đường cao kẻ từ A). Mà 2 tam giác này có AM chung nên đường cao kẻ từ B gấp 2 lần đường cao kẻ từ C xuống AM.
Hai đường cao này cũng là 2 đường cao của 2 tam giác ADB và ADC.
SADC = 1/2SADB => SADB = 40 x 2 = 80 (cm2)
SANB = SAND + SADB = 10 + 80 = 90 (cm2)
Mà SANB = 1/4SABC (2 tam giác này có CA=4NA, chung đường cao kẻ từ A).
Vậy SABC = 90 x 4 = 360 (cm2)
Ta có CN = 3NA hay CA = 4NA
SAND = 1/4SADC (2 tam giác này có CA=4NA, chung đường cao kẻ từ D).
=> SADC = 10 x 4 = 40 (cm2)
Ta lại có SAMC = 1/2SAMB (BM=2MC, chung đường cao kẻ từ A). Mà 2 tam giác này có AM chung nên đường cao kẻ từ B gấp 2 lần đường cao kẻ từ C xuống AM.
Hai đường cao này cũng là 2 đường cao của 2 tam giác ADB và ADC.
SADC = 1/2SADB => SADB = 40 x 2 = 80 (cm2)
SANB = SAND + SADB = 10 + 80 = 90 (cm2)
Mà SANB = 1/4SABC (2 tam giác này có CA=4NA, chung đường cao kẻ từ A).
Vậy SABC = 90 x 4 = 360 (cm2)
Giải:
S.ADC=4xS.ADN=10x4=40(cm2)(chung chiều caohạ từ D xuống AC và Ac=4xAN) S.AMB=2xS.AMC(chung chiều cao hạ từ A xuống BC, đáy BM=2xMC)mà 2 tam giác có chung dáy AMSuy ra chiều cao hạ từ B xuống AM bằng 2 lần chiều cao hạ từ C xuống AM)
Vậy S.ADB=2xS.ADC=40x2=80cm2
S.ABN= 80+10=90(bằng S.ABD+S.ADC)
S.ABC= SABNx4= 90x4=360 cm2
a) Ta có: MN // BC(gt) => \(\frac{AM}{AB}=\frac{AN}{AC}\)(theo định lí Ta - lét)
=> \(AN=\frac{AM}{AB}.AC=\frac{2,25}{6}\cdot8=3\)(cm)
=> \(CN=AC-AN=8-3=5\)
b) Ta có: MK // BI (gt) => \(\frac{MK}{BI}=\frac{AK}{AI}\)(theo định lí Ta - lét)
NK // IC (gt) => \(\frac{KN}{IC}=\frac{AK}{AI}\)(theo định lí Ta - lét)
=> \(\frac{MK}{BI}=\frac{KN}{IC}\) mà BI = IC (gt)
=> MK = KN => K là trung điểm của MN
c) Do BN là tia p/giác của góc ABC => \(\frac{AB}{BC}=\frac{AN}{NC}\)(t/c đường p/giác của t/giác)
=> \(BC=AB:\frac{AN}{NC}=6:\frac{3}{5}=10\)(cm)
Ta có: BC2 = 102 = 100
AB2 + AC2 = 62 + 82 = 100
=> BC2 = AB2 + AC2 => t/giác ABC vuông tại A (theo định lí Pi - ta - go đảo)
=> SABC = AB.AC/2 = 6.8/2 = 24 (cm2)
Hình bạn tự vẽ nhá
a) Ta có: MB = AB - AM = 6 - 2,25 = 3,75 (cm)
Gọi x là AN
NC là: 8 - x
Vì MN // BC, theo định lý Ta-lét ta có:
AMMB=ANNC⇔2,253,75=x8−x
⇔2,25(8−x)3,75(8−x)=3,75x3,75(8−x)
⇔2,25(8−x)=3,75x
⇔18−2,25x=3,75x
⇔−2,25x−3,75x=−18
⇔−6x=−18
⇔x=−18−6
⇔x=3
Nên NC = 8 - x = 8 - 3 = 5 (cm)
Vậy AN = 3cm, NC = 5cm
b) Ta có: MN // BC (gt) (1)
⇒ MK // BI, theo hệ quả của định lý Ta-lét ta có:
AKAI=MKBI (2)
Từ (1) ⇒ KN // IC, theo hệ quả của định lý Ta-lét ta có:
AKAI=KNIC (3)
Từ (2), (3) ⇒MKBI=KNIC(4)
Mà BI = IC (gt) (5)
Từ (4), (5) ⇒MK=KN
Nên K là trung điểm của MN