Bài 3
Cho \(M=24.\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)và \(N=5^{32}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(=5^{32}-1< 5^{32}\)
Vậy \(B< A\)
3: =(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^16+1)
=(5^4-1)(5^4+1)(5^8+1)(5^16+1)
=(5^8-1)(5^8+1)(5^16+1)
=(5^16-1)(5^16+1)
=5^32-1
4:
D=(4^4-1)(4^4+1)(4^8+1)*....*(4^64+1)
=(4^8-1)(4^8+1)*...*(4^64+1)
=...
=4^128-1
5: =(5^2-1)(5^2+1)(5^4+1)*...*(5^128+1)+(5^256-1)
=(5^4-1)(5^4+1)*...*(5^128+1)+5^256-1
=5^256-1+5^256-1
=2*5^256-2
\(B=10^2+8^2+...+2^2-\left(9^2+7^2+5^2+3^2+1^2\right)\)
\(B=\left(10^2-9^2\right)+\left(8^2-7^2\right)+...+\left(2^2-1^2\right)\)
\(B=\left(10+9\right)\left(10-9\right)+\left(8+7\right)\left(8-7\right)+...+\left(2-1\right)\left(2+1\right)\)
\(B=19+15+...+3\)
Đến đây dễ rồi. Câu a) đang suy nghĩ
\(A=1+\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(4A=4+4\cdot\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(4A=4+\left(5-1\right)\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(4A=4+\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(4A=4+\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(4A=4+\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(4A=4+\left(5^{16}-1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(4A=4+\left(5^{32}-1\right)\left(5^{32}+1\right)\)
\(4A=4+5^{64}-1\)
\(4A=5^{64}+3\)
\(A=\frac{5^{64}+3}{4}\)
a)\(\left(4-\dfrac{12}{5}\right).\dfrac{25}{8}-\dfrac{2}{5}:\dfrac{-4}{25}\)
\(=\left(\dfrac{4}{1}-\dfrac{12}{5}\right).\dfrac{25}{8}-\dfrac{2}{5}:\dfrac{-4}{25}\)
\(=\left(\dfrac{20}{5}-\dfrac{12}{5}\right).\dfrac{25}{8}-\dfrac{2}{5}:\dfrac{-4}{25}\)
\(=\dfrac{8}{5}.\dfrac{25}{8}-\dfrac{2}{5}:\dfrac{-4}{25}\)
\(=1-\dfrac{2}{5}.\dfrac{25}{-4}\)
\(=1-\dfrac{-5}{2}\)
\(=\dfrac{2}{2}-\dfrac{-5}{2}\)
\(=\dfrac{7}{2}\)
dài quá nên mik sẽ giải lần lượt mỗi câu trả lời là một câu nhá bạn!!
Giải:
a)(4-12/5).25/8-2/5:-4/25
=8/5.25/8-(-5/2)
=5+5/2
=15/2
b)(-5/24+3/4-7/12):(-5/16)
=-1/24:(-5/16)
=2/15
c)6/7+5/4:(-5)-(-1/28).(-2)2
=6/7+(-1/4)-(-1/28).4
=6/7-1/4-(-1/7)
=6/7-1/4+1/7
=(6/7+1/7)-1/4
=1-1/4
=3/4
Chúc bạn học tốt!
\(B=\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(B=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right).\frac{1}{24}\)
\(B=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right).\frac{1}{24}\)
\(B=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right).\frac{1}{24}\)
\(B=\left(5^{16}-1\right)\left(5^{16}+1\right)\left(5^{32}+1\right).\frac{1}{24}\)
\(B=\left(5^{32}-1\right)\left(5^{32}+1\right).\frac{1}{24}\)
\(B=\left(5^{64}-1\right).\frac{1}{24}\)
\(B=\frac{5^{64}-1}{24}\)
a) Ta có: \(2\dfrac{3}{3}\cdot4\cdot\left(-0.4\right)+1\dfrac{3}{5}\cdot1.75+\left(-7.2\right):\dfrac{9}{11}\)
\(=-4.8+\dfrac{8}{5}\cdot\dfrac{7}{4}-\dfrac{36}{5}\cdot\dfrac{11}{9}\)
\(=\dfrac{-24}{5}+\dfrac{14}{5}-\dfrac{44}{5}\)
\(=\dfrac{-54}{5}\)
b) Ta có: \(\left(\dfrac{1}{24}-\dfrac{5}{16}\right):\dfrac{-3}{8}+1^{10}\cdot\left(-5\right)^0\)
\(=\left(\dfrac{2}{48}-\dfrac{15}{48}\right)\cdot\dfrac{8}{-3}+1\cdot1\)
\(=\dfrac{-13}{48}\cdot\dfrac{-8}{3}+1\)
\(=\dfrac{13}{18}+\dfrac{18}{18}=\dfrac{31}{18}\)
a)\(\left(2+1\right)\left(2^2+1\right)....\left(2^{256}+1\right)-1\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)...\left(2^{256}+1\right)-1\)
\(=\left(2^2-1\right)\left(2^2+1\right)...\left(2^{256}+1\right)-1\)
Tiếp tục như thế, ta được:
\(=\left(2^{256}-1\right)\left(2^{256}+1\right)-1=2^{512}-1-1=2^{512}-2\)
b) \(24\left(5^2+1\right)\left(5^4+1\right)...\left(5^{32}+1\right)-5^{64}\)
\(=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)...\left(5^{32}+1\right)-5^{64}\)
\(=\left(5^4-1\right)\left(5^4+1\right)...\left(5^{32}+1\right)-5^{64}\)
Tiếp tục như thế, ta được:
\(=\left(5^{32}-1\right)\left(5^{32}+1\right)-5^{64}=5^{64}-1-5^{64}=-1\)
\(\left(2+1\right).\left(2^2+1\right)....\left(2^{256}+1\right)-1\)
\(\left(2-1\right).\left(2+1\right).\left(2^2+1\right).....\left(2^{256}+1\right)-1\)
\(=\left(2^2-1\right).\left(2^2+1\right)....\left(2^{256}+1\right)-1\)
\(=\left(2^{256}-1\right).\left(2^{256}+1\right)+1=2^{512}+1\)
\(A=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(A=\dfrac{24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(A=\dfrac{\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(A=\dfrac{\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(A=\dfrac{\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(A=\dfrac{\left(5^{16}-1\right)\left(5^{16}+1\right)}{2}\)
\(A=\dfrac{5^{32}-1}{2}\)
\(A=\left|2x+4\right|+\left|2x+6\right|+\left|2x+8\right|\)
\(A=\left|2x+4\right|+\left|2x+8\right|+\left|2x+6\right|\)
\(A=\left|2x+4\right|+\left|-2x-8\right|+\left|2x+6\right|\)
\(A\ge\left|2x+4-2x-8\right|+\left|2x+6\right|\)
\(A\ge4+\left|2x+6\right|\)
Vì \(\left|2x+6\right|\ge0\) nên \(A\ge4\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}2x+4\le0\\2x+6=0\\2x+8\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x\le-4\\2x=-6\\2x\ge-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le-2\\x=-3\\x\ge-4\end{matrix}\right.\)
Vậy \(x=-3\)
\(M=4.6\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)\(=\left(5-1\right)\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)\(=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)=\left(5^{16}-1\right)\left(5^{16}+1\right)=5^{32}-1\)
Vậy M <N