hãy tìm 6 điểm để vẽ 7 tam giác sao cho 2 tam giác bất kì không chùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ tam giác ABC Lấy BC ở phía trên đáy dưới là AC cho dễ vẽ. Nối MA từ B kẻ BE song song với MA cắt CA kéo dài tại E. Ta có BEAM là hình thang. vậy S(MAE)= S(BAM) (vì chung đáy MA và chung chiều cao là hình thang) Vậy S(MAC)+ S(MAE)= S(MCA)+S(EAM) Hay S(MEC)= S(ABC) Xác ddingj trung điểm N của EC . Nối MN ta được đường thẳng cần kẻ. Bài toán đã giải xong. Mình không vẽ hình bạn đọc tự vẽ nhé.
Vẽ tam giác ABC Lấy BC ở phía trên đáy dưới là AC cho dễ vẽ.
Nối MA từ B kẻ BE song song với MA cắt CA kéo dài tại E.
Ta có BEAM là hình thang. vậy S(MAE)= S(BAM) (vì chung đáy MA và chung chiều cao là hình thang)
Vậy S(MAC)+ S(MAE)= S(MCA)+S(EAM)
Hay S(MEC)= S(ABC)
Xác ddingj trung điểm N của EC . Nối MN ta được đường thẳng cần kẻ.
Bài toán đã giải xong. Mình không vẽ hình bạn đọc tự vẽ nhé.
a: Ta có: AB\(\perp\)AC
HK\(\perp\)AC
Do đó: HK//AB
b: Xét ΔAKI có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔAKI cân tại A
c: Ta có: ΔAKI cân tại A
mà AH là đường cao
nên AH là phân giác của góc IAK
=>\(\widehat{IAH}=\widehat{KAH}\)
Ta có: \(\widehat{BAK}+\widehat{HAK}=\widehat{BAH}=90^0\)
\(\widehat{AIK}+\widehat{IAH}=90^0\)(ΔAHI vuông tại H)
mà \(\widehat{HAK}=\widehat{IAH}\)
nên \(\widehat{BAK}=\widehat{AIK}\)
d: Xét ΔAIC và ΔAKC có
AI=AK
\(\widehat{IAC}=\widehat{KAC}\)
AC chung
Do đó: ΔAIC=ΔAKC