Cho hình vuông ABCD cạnh bằng 1. Gọi EF thứ tự là trung điểm của AB và AD. Tính
a) Diện tích tứ giác AECF
b) Góc ECF ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của tia \(AM\) lấy \(I\) sao cho: \(AI=CE\)
Xét \(\Delta ADI\) và \(\Delta CDE\) có:
\(AD=CD\left(gt\right)\)
\(\widehat{DAI}=\widehat{DCE}=90^o\)
\(AI=CE\left(gt\right)\)
Vậy \(\Delta ADI=\Delta CDE\left(c.g.c\right)\)
\(\Leftrightarrow\widehat{IDA}=\widehat{EDC}\) ( 2 góc t/ứng )
\(\Leftrightarrow\widehat{AID}=\widehat{CED}\) ( 2 góc t/ứng )
\(\Leftrightarrow\) \(\widehat{CED}=\widehat{ADE}\) mà 2 góc này ở vị trí so le trong ( do \(AD//BC\) )
\(\Rightarrow\widehat{AID}=\widehat{ADE}\left(1\right)\)
Ta có: \(\widehat{ADE}=\widehat{ADM}+\widehat{MDE}\left(2\right)\)
Vì \(\widehat{MDE}=\widehat{EDC}\)
\(\Rightarrow\widehat{MED}=\widehat{IDA}\left(3\right)\)
Từ \(\left(2\right);\left(3\right)\Rightarrow\widehat{ADE}=\widehat{ADM}+\widehat{IDA}=\widehat{IDM}\left(4\right)\)
Từ \(\left(1\right);\left(4\right)\Rightarrow\widehat{AID}=\widehat{IDM}\)
\(\Leftrightarrow\widehat{MID}=\widehat{IDM}\)
\(\Leftrightarrow\Delta IDM\) cân \(\left\{M\right\}\)
\(\Leftrightarrow DM=IM\)
Ta lại có: \(IM=AM+AI=AM+CE\)
\(\Rightarrow DM=AM+CE\)
1: Xét ΔCAB có
F,E lần lượt là trung điểm của CA,CB
=>FE là đường trung bình của ΔCAB
=>FE//AB và \(FE=\dfrac{AB}{2}\)
Xét ΔDAB có
G,H lần lượt là trung điểm của DA,DB
=>GH là đường trung bình của ΔDAB
=>GH//AB và \(GH=\dfrac{AB}{2}\)
GH//AB
FE//AB
Do đó: GH//FE
Ta có: \(GH=\dfrac{AB}{2}\)
\(FE=\dfrac{AB}{2}\)
Do đó: GH=FE
Xét tứ giác EFGH có
GH=FE
GH//FE
Do đó: EFGH là hình bình hành
2: AB=CD
mà AB=8cm
nên CD=8cm
Xét ΔADC có
G,F lần lượt là trung điểm của AD,AC
=>GF là đường trung bình của ΔADC
=>GF//DC và \(GF=\dfrac{DC}{2}=4cm\)
GF//DC
DC\(\perp\)AB
Do đó: GF\(\perp\)AB
Ta có: GF\(\perp\)AB
AB//GH
Do đó: GH\(\perp\)GF
Xét hình bình hành GHEF có GH\(\perp\)GF
nên GHEF là hình chữ nhật
=>\(S_{GHEF}=GH\cdot GF=\dfrac{AB}{2}\cdot\dfrac{CD}{2}=4\cdot4=16\left(cm^2\right)\)
1: Xét ΔCAB có
F,E lần lượt là trung điểm của CA,CB
=>FE là đường trung bình của ΔCAB
=>FE//AB và FE=AB
2
Xét ΔDAB có
G,H lần lượt là trung điểm của DA,DB
=>GH là đường trung bình của ΔDAB
=>GH//AB và GH=AB
2
GH//AB
FE//AB
Do đó: GH//FE
Ta có: GH=AB2
F
E
=
A
B
2
Do đó: GH=FE
Xét tứ giác EFGH có
GH=FE
GH//FE
Do đó: EFGH là hình bình hành
2: AB=CD
mà AB=8cm
nên CD=8cm
Xét ΔADC có
G,F lần lượt là trung điểm của AD,AC
=>GF là đường trung bình của ΔADC
=>GF//DC và
G
F
=
D
C
2
=
4
c
m
GF//DC
DC
⊥
AB
Do đó: GF
⊥
AB
Ta có: GF
⊥
AB
AB//GH
Do đó: GH
⊥
GF
Xét hình bình hành GHEF có GH
⊥
GF
nên GHEF là hình chữ nhật
=>
S
G
H
E
F
=
G
H
⋅
G
F
=
A
B
2
⋅
C
D
2
=
4
⋅
4
=
16
(
c
m
2
)