K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2021

Áp dụng Menelaus:

\(\dfrac{AK}{BK}\cdot\dfrac{BH}{CH}\cdot\dfrac{CI}{AI}=1\Leftrightarrow\dfrac{1}{2}\cdot\dfrac{BH}{HC}\cdot1=1\\ \Leftrightarrow\dfrac{BH}{HC}=2\Leftrightarrow\dfrac{HC}{HB}=\dfrac{1}{2}\)

 Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Kẻ AH vuông góc với BC tại Ha) Chứng minh rằng H làtrung điểm của đoaṇ thẳng BCb) Tính độ dài đoạn thẳng AHc) Kẻ HI AB taị I và HK  AC taị K. Vẽ các điểm D và E sao cho I ,K lần lươṭ làtrung điểmcủa HD và HE. Chứng minh AE = AH . Tam giác ADE là tam giác gì? Vì sao?d) Chứng minh AH là đường trung trực của đoạn thẳng DE .e) Tìm điều kiện của tam giác...
Đọc tiếp

 

Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Kẻ AH vuông góc với BC tại H
a) Chứng minh rằng H là

trung điểm của đoaṇ thẳng BC

b) Tính độ dài đoạn thẳng AH
c) Kẻ HI AB taị I và HK  AC taị K. Vẽ các điểm D và E sao cho I ,K lần lươṭ là

trung điểm

của HD và HE. Chứng minh AE = AH . Tam giác ADE là tam giác gì? Vì sao?
d) Chứng minh AH là đường trung trực của đoạn thẳng DE .
e) Tìm điều kiện của tam giác ABC để A là trung điểm của DE

Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Kẻ AH vuông góc với BC tại H
a) Chứng minh rằng H là

trung điểm của đoaṇ thẳng BC

b) Tính độ dài đoạn thẳng AH
c) Kẻ HI AB taị I và HK  AC taị K. Vẽ các điểm D và E sao cho I ,K lần lươṭ là

trung điểm

của HD và HE. Chứng minh AE = AH . Tam giác ADE là tam giác gì? Vì sao?
d) Chứng minh AH là đường trung trực của đoạn thẳng DE .
e) Tìm điều kiện của tam giác ABC để A là trung điểm của DE

0
6 tháng 4 2022

Cậu tham khảo:

undefined

6 tháng 4 2022

Em tham khảo bài này đi, a dốt toán lắm ;v

undefined

16 tháng 2 2019

a, xét tam giác ABK và tam giác IBK có : BK chung

góc CAB = góc KIB = 90 do.... 

góc IBK = góc KBA do BK là phân giác của góc ABC (gt)

=> tam giác ABK = tam giác IBK (ch - gn)

b,  tam giác ABK = tam giác IBK (câu a)

=> KI = KA (đn)

xét tam giác KIC và tam giác KAH có : góc IKC = góc AKH (đối đỉnh)

góc KAH = góc KIC = 90 do...

=> tam giác KIC = tam giác KAH  (cgv - nhk)

=> CI = HA (đn) và IB = AB do tam giác ABK = tam giác IBK (câu a)

=> CI + IB = HA + AB 

=> CB = HB 

=> tam giác CHB cân tại  B (đn)

c, xét tam giác BHM và tam giác BCM có : MB chung

CB = HB (câu b)

góc HMB = góc CMB = 90 do BM _|_ HC (gt)

=> tam giác BHM = tam giác BCM  (ch - cgv)

=> góc CBM = góc HBM (đn) mà tia BM nằm giữa BC và BH 

=> BM là phân giác của góc ABC (đn)

BK là phân giác của hóc ABC (gt)

=> 3 điểm B; M; K thẳng hàng

d, góc B = 60 (em đoán vậy thôi :v)

17 tháng 2 2019

                            Giải

a, Xét \(\Delta ABK\) và \(\Delta IBK\) có BK chung

\(\Rightarrow\widehat{CAB}=\widehat{KIB}=90^0\)

 \(\Rightarrow\widehat{IBK}=\widehat{KBA}\)do BK là phân giác của \(\widehat{ABC}\)

 \(\Rightarrow\Delta ABK=\Delta IBK\)

b,  \(\Rightarrow\Delta ABK=\Delta IBK\Leftrightarrow KI=KA\)

Xét \(\Delta KIC\) và \(\Delta KAH\)\(\widehat{IKC}=\widehat{AKH}\) ( đối đỉnh )

góc KAH = góc KIC = 900

=> tam giác KIC = tam giác KAH  (cgv - nhk)

=> CI = HA (đn) và IB = AB do tam giác ABK = tam giác IBK (câu a)

=> CI + IB = HA + AB 

=> CB = HB 

=> tam giác CHB cân tại  B (đn)

c, xét tam giác BHM và tam giác BCM có : MB chung

=> CB = HB 

góc HMB = góc CMB = 90 do BM _|_ HC 

=> tam giác BHM = tam giác BCM  

=> góc CBM = góc HBM (đn) mà tia BM nằm giữa BC và BH 

=> BM là phân giác của góc ABC 

BK là phân giác của hóc ABC 

=> 3 điểm B; M; K thẳng hàng

d, góc B = 60

26 tháng 10 2023

Để chứng minh rằng 3 điểm H, G, C thẳng hàng, ta cần sử dụng một số kiến thức về hình học và tính chất của tam giác. Từ đề bài, ta biết rằng tam giác ABC là tam giác vuông tại A, i là trung điểm của cạnh AC, và k là một đường thẳng song song với cạnh AB. Ta cũng biết rằng đường thẳng ck cắt đường thẳng BI tại điểm Da và đường thẳng cm cắt đường thẳng CDI tại điểm Da. Từ đó, ta có thể suy ra rằng tam giác ABI và tam giác CDI là hai tam giác đồng dạng.

Để chứng minh AK = IHc, ta cần sử dụng tính chất của tam giác đồng dạng và các đường thẳng song song. Tuy nhiên, để chứng minh điều này, ta cần có thêm thông tin về vị trí của các điểm và các góc trong tam giác ABC.