K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2020

Câu c) là gì vậy, có lẽ là toán cực trị, GTLN?

a) Vì M thuộc (O) nên các tam giác BMA và CMD vuông tại M nên:

\(sin^2MBA+sin^2MAB+sin^2MCD+sin^2MDC\)

\(=\left(sin^2MBA+cos^2MBA\right)+\left(sin^2MCD+cos^2MCD\right)\)

\(=1+1=2\)

b) KOHM là hình chữ nhật nên: OK = MH
Mà MH2 = HA.HB (Hệ thức lượng trong tam giác vuông MAB có MH đường cao)
và BH = AB - AH = 2R – AH
Suy ra \(OK^2=MH^2=AH\left(2R-AH\right)\)

a: Kẻ BD vuông góc AC,CE vuông góc AB

góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

=>góc AED=góc ACB

=>ΔAED đồng dạng vơi ΔACB

Tâm M của đường tròn ngoại tiếp tứ giác BDCE là trung điểm của BC

Gọi H là giao của BD và CE

=>AH vuông góc BC tại N

Gọi giao của OM với (O) là A'

ΔOBC cân tại O

=>OM vuông góc BC

AN<=A'M ko đổi

=>\(S_{ABC}=\dfrac{1}{2}\cdot AN\cdot BC< =\dfrac{1}{2}\cdot A'M\cdot BC_{kođổi}\)

Dấu = xảy ra khi A trùng A'

=>A là điểm chính giữa của cung BC

 

1/Cho 3 số nguyên tố: a, a+k, a+2k (a>3,k thuộc N*). Chứng minh k chia hết cho 6.2/Giải phương trình: Căn(x-2) + Căn(y+2018) + Căn(z-2019) = 1/2(x+y+z).3/Cho (O;R).Vẽ hai dây AB,CD cố định và vuông góc nhau. M thuộc cung AC và nằm trên (O).K,H lần lượt là hình chiếu của M trên CD,AB. H là giao điểm của 2 dây AB và CD.a/Tính sin^2 gócMBA + sin^2 góc MAB + sin^2 góc MCD + sin^2 góc MDC.b/Chứng minh:OK^2 = AH.(2R - AH).c/Tìm vị...
Đọc tiếp

1/Cho 3 số nguyên tố: a, a+k, a+2k (a>3,k thuộc N*). Chứng minh k chia hết cho 6.

2/Giải phương trình: Căn(x-2) + Căn(y+2018) + Căn(z-2019) = 1/2(x+y+z).

3/Cho (O;R).Vẽ hai dây AB,CD cố định và vuông góc nhau. M thuộc cung AC và nằm trên (O).K,H lần lượt là hình chiếu của M trên CD,AB. H là giao điểm của 2 dây AB và CD.

a/Tính sin^2 gócMBA + sin^2 góc MAB + sin^2 góc MCD + sin^2 góc MDC.

b/Chứng minh:OK^2 = AH.(2R - AH).

c/Tìm vị trí của H để P = MA.MB.MC.MD có giá trị lớn nhất.

4/a/Cho (O;R) và đường thẳng d không đi qua (O).Lấy điểm M di chuyển được trên đường thẳng d. Từ M vẽ hai tiếp tuyến MP,MQ của (O). Chứng minh: Khi M thay đổi vị trí trên đường thẳng d thì dây cung PQ luôn đi qua 1 điểm cố định.

b/Cho tam giác có cạnh lớn nhất bằng 2. Người ta lấy 5 điểm phân biệt trong tam giác này. Chứng minh: Luôn tồn tại 2 điểm có khoảng cách không vượt quá 1. 

TỚ ĐANG CẦN GẤP LẮM. MONG CÁC BẠN GIẢI HỘ GIÙM MÌNH VỚI GHEN.CẢM ƠN NHIỀU NHIỀU !!!!!

0
21 tháng 4 2023

PQ nhỏ nhất khi nào