K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 9 2020

Gọi I là trung điểm AB \(\Rightarrow\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{0}\)

\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}-\overrightarrow{MB}\right|\)

\(\Leftrightarrow\left|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}\right|=\left|\overrightarrow{MA}+\overrightarrow{BM}\right|\)

\(\Leftrightarrow\left|2\overrightarrow{MI}\right|=\left|\overrightarrow{BA}\right|\)

\(\Leftrightarrow MI=\frac{1}{2}AB\)

Tập hợp M là đường tròn tâm I bán kính \(R=\frac{AB}{2}\)

25 tháng 9 2016

a,MA-MB=BA

MA+AB=MB

MB=MB (Luôn đúng)

b,MA-MB=AB

MA+BM=AB

BA=AB?????

25 tháng 9 2019

MA+MC= MA-MB

<=> 2 MI=BA

=> MI=BA/2

=> I thuộc đường tròn I bán kính AB/2

25 tháng 9 2019

nãy mk quên giải thik: 

a, gọi I la trung điểm của AC=> MA+MC=2MI

hok tốt

23 tháng 11 2021

 

 

NV
20 tháng 8 2021

\(\left|\overrightarrow{MA}\right|=\left|\overrightarrow{MB}\right|\Leftrightarrow MA=MB\)

\(\Rightarrow\) Tập hợp M là đường trung trực của AB

5 tháng 9 2019

a) \(2\overrightarrow{IA}-\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\Rightarrow2\overrightarrow{IA}-\overrightarrow{IA}-\overrightarrow{AB}+\overrightarrow{IA}+\overrightarrow{AC}=\overrightarrow{0}\)

\(\Rightarrow2\overrightarrow{AI}=\overrightarrow{AC}-\overrightarrow{AB}\Rightarrow\overrightarrow{AB}+2\overrightarrow{AI}=\overrightarrow{AC}\). Từ đó suy ra cách dựng điểm I:

A B C I

b) Với cách lấy điểm I như trên, ta có điểm I cố định. Khi đó MN đi qua I, thật vậy:

\(\overrightarrow{MN}=2\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=2\overrightarrow{MI}+2\overrightarrow{IA}-\overrightarrow{MI}-\overrightarrow{IB}+\overrightarrow{MI}+\overrightarrow{IC}\)

\(=2\overrightarrow{MI}+\left(2\overrightarrow{IA}-\overrightarrow{IB}+\overrightarrow{IC}\right)=2\overrightarrow{MI}\)

Suy ra I là trung điểm MN hay MN đi qua điểm I cố định (đpcm).

c) \(\overrightarrow{MP}=\frac{1}{2}\overrightarrow{MB}+\frac{1}{2}\overrightarrow{MN}=\overrightarrow{MA}+\frac{1}{2}\overrightarrow{MC}\)

Đặt K là điểm sao cho \(\overrightarrow{KA}+\frac{1}{2}\overrightarrow{KC}=\overrightarrow{0}\Rightarrow\hept{\begin{cases}K\in\left[AC\right]\\KA=\frac{1}{2}KC\end{cases}}\)tức K xác định

Khi đó \(\overrightarrow{MP}=\overrightarrow{MK}+\overrightarrow{KA}+\frac{1}{2}\overrightarrow{MK}+\frac{1}{2}\overrightarrow{KC}=\frac{3}{2}\overrightarrow{MK}\), suy ra MP đi qua K cố định (đpcm).