1.2+2.3+3.4+.....+15.16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1.2 + 2.3 + 3.4 + ... + 15.16
3S = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + ... +15.16.(17-14)
3S = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 15.16.17 - 14.15.16
3S = 15.16.17
S = 5.16.17
S = 1360
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{14.15}+\frac{1}{15.16}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{16}\)
\(=1-\frac{1}{16}\)
\(=\frac{15}{16}\)
Chúc bạn học giỏi nha!!!
K cho mik vs nhé
1/1.2+1/2.3+1/3.4+.........+1/14.15+1/15.16
=1-1/2+1/2-1/3+...+1/15-1/16
=1-1/16
=15/16 *k mk nha*
\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right):x=\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{15.16}\)
\(\left(\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}\right).\frac{1}{x}=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{15.16}\right)\)
\(\frac{8+4+2+1}{16}.\frac{1}{x}=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(\frac{15}{16}.\frac{1}{x}=3.\left(1-\frac{1}{16}\right)\)
\(\frac{15}{16}.\frac{1}{x}=3.\frac{15}{16}\)
=> \(\frac{1}{x}=3\)
=> \(x=\frac{1}{3}\)
*S=1-1/4+1/4-1/7+1/7-1/11+1/11-1/14+1/14-1/17
S=1-1/17=16/17
*M=2(1/1.2+1/2.3+...+1/15.16)
M=2(1-1/2+1/2-1/3+..+1/15-1/16)
M=2(1-1/16)
M=2.15/16
M=15/8
:w
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.11}+\frac{3}{11.14}+\frac{3}{14.17}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)
\(S=1-\frac{1}{17}\)
\(S=\frac{16}{17}\)
\(M=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{15.16}\)
\(M=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(M=2.\left(1-\frac{1}{16}\right)\)
\(M=2.\frac{15}{16}\)
\(=\frac{30}{16}=\frac{15}{8}\)
3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+2014.2015.(2016-2013)
3C=2014.2015.2016
C=2014.2015.2016:3
Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 32.33
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + 32.33.34
=> 3S = 32.33.34
=> S = \(\frac{32.33.34}{3}=11968\)
Đặt \(A=1.2+2.3+3.4+.......+15.16\)
\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+........+15.16.3\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+......+15.16.\left(17-14\right)\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+......+15.16.17-14.15.16\)
\(=15.16.17\)
\(\Rightarrow A=\frac{15.16.17}{3}=\frac{4080}{3}=1360\)
A = 1.2+2.3+3.4+...15.16
3A = 1.2.3+2.3(4-1)+3.4.(5-2)+.+15.16.(17-14)
3A = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.+15.16.17-14.15.16
3A = 15.16.17