K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2020

ĐKXĐ : \(x\ge\sqrt{3}\)

\(\sqrt{3x+\sqrt{3}}-\sqrt{x-\sqrt{3}}=2\sqrt{x}\)

\(\Leftrightarrow3x+\sqrt{3}-2\sqrt{\left(3x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}+x-\sqrt{3}=4x\)

\(\Leftrightarrow2\sqrt{\left(3x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x+\sqrt{3}=0\\x-\sqrt{3}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-\sqrt{3}}{3}\left(ktm\right)\\x=\sqrt{3}\left(tm\right)\end{cases}}}\)

Vậy phương trình có nghiệm duy nhất là \(x=\sqrt{3}\)

21 tháng 9 2020

đk: \(x\ge\sqrt{3}\)

Ta có: \(\sqrt{3x+\sqrt{3}}-\sqrt{x-\sqrt{3}}=2\sqrt{x}\)

\(\Leftrightarrow3x+\sqrt{3}-2\sqrt{\left(3x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}+x-\sqrt{3}=4x\)

\(\Leftrightarrow2\sqrt{\left(3x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}=0\)

\(\Leftrightarrow\left(3x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x+\sqrt{3}=0\\x-\sqrt{3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{\sqrt{3}}{3}\left(ktm\right)\\x=\sqrt{3}\left(tm\right)\end{cases}}\)

Vậy \(x=\sqrt{3}\)

17 tháng 11 2021

Điều kiện \(x\ge-1\)

Phương trình đã cho tương đương với

\(\left(x+1\right)\sqrt{x+1}+4\sqrt{x+1}+1=\sqrt[3]{3x+4}\)

\(\Leftrightarrow\left(x+1\right)\sqrt{x+1}+4\sqrt{x+1}+1+3\left(x+1\right)+1=\sqrt[3]{3x+4}+\left(\sqrt[3]{3x+4}\right)^3\)

\(\Leftrightarrow\left(\sqrt{x+1}+1\right)^2+\left(\sqrt{x+1}+1\right)=\left(\sqrt[3]{3x+4}\right)^3+\sqrt[3]{3x+4}\) (*)

Xét hàm số f(t) =t3+t trên R

                   f'(t)=3t2+1>0 với mọi x \(\in\)R

Nên (*) \(\Leftrightarrow f\left(\sqrt{x+1}+1\right)=f\left(\sqrt[3]{3x+4}\right)\Leftrightarrow\sqrt{x+1}+1=\sqrt[3]{3x+4}\)

Đặt \(\left\{{}\begin{matrix}u=\sqrt{x+1}\\y=\sqrt[3]{3x+4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}u+1=v\\3u^2+1=v^3\end{matrix}\right.\)

\(\Rightarrow v^3=3\left(v-1\right)^2+1\Leftrightarrow v^3-1-3\left(v-1\right)^2=0\Leftrightarrow v=1\)

Với v=1 => x=-1

Vậy x=-1 là nghiệm của phương trình

1 tháng 11 2019

nhiều thế giải ko đổi đâu bạn

1 tháng 11 2019

vậy trả lời câu a thôi

18 tháng 11 2018

Đặt \(\sqrt[3]{x+2}=a;\sqrt[3]{3x+2}=2\)

Ta có: \(\left\{{}\begin{matrix}a-b=2\\3a^3-b^3=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+2\left(1\right)\\3a^3-b^3=4\end{matrix}\right.\)

Thay (1) vào (2) ta có:

3(b + 2)3 - b3 = 4

<=> 3(b3 + 6b2 + 12b + 8) - b3 = 4

<=> 2b3 + 6b2 + 12b + 4 = 0

<=> b3 + 3b2 + 6b + 2 = 0

Đến đây chắc phải dùng công thức nghiệm tổng quát, vô lý @@

27 tháng 11 2018

ban giai sai roi, bài này ra no là (\(-46-18\sqrt{6}\);\(-46+18\sqrt{6}\);-1)

24 tháng 5 2016

x= 0.761322463768116,

x= 0.369494467346496,

x=1.57660410301179

21 tháng 6 2021

`ĐK:x>=2`

`pt<=>sqrt{(x-1)(x-2)}+sqrt{x+3}=sqrt{x-2}+sqrt{(x-1)(x+3)}`

`<=>sqrt{x-1}(sqrt{x-2}-sqrt{x+3})-(sqrt{x-2}-sqrt{x+3})=0`

`<=>(sqrt{x-2}-sqrt{x+3})(sqrt{x-1}-1)=0`

`+)sqrt{x-2}=sqrt{x+3}`

`<=>x-2=x+3`

`<=>0=5` vô lý

`+)sqrt{x-1}-1=0`

`<=>x-1=1`

`<=>x=2(tm)`.

Vậy `x=2`.

NV
5 tháng 11 2019

a/ ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1}=\sqrt{5x-1}+\sqrt{3x-2}\)

\(\Leftrightarrow x-1=8x-3+2\sqrt{\left(5x-1\right)\left(3x-2\right)}\)

\(\Leftrightarrow2-7x=2\sqrt{\left(5x-1\right)\left(3x-2\right)}\)

Do \(x\ge1\Rightarrow2-7x< 0\Rightarrow\left\{{}\begin{matrix}VP\ge0\\VT< 0\end{matrix}\right.\)

Phương trình vô nghiệm

b/ ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{x-1}+1\right|+\left|1-\sqrt{x-1}\right|=2\)

\(\left|\sqrt{x-1}+1\right|+\left|1-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}+1+1-\sqrt{x-1}\right|=2\)

Dấu "=" xảy ra khi và chỉ khi \(1-\sqrt{x-1}\ge0\Rightarrow x\le2\Rightarrow1\le x\le2\)

Vậy nghiệm của pt là \(1\le x\le2\)

AH
Akai Haruma
Giáo viên
27 tháng 1 2022

Bạn tham khảo thêm ở link sau:

https://hoc24.vn/cau-hoi/giai-phuong-trinhsqrt3x2-5x1-sqrtx2-2sqrt3leftx2-x-1right-sqrtx2-3x4.167769342831