(2x+1)^2-(x+2)^2-3x.(x+2)
dấu chấm là nhân đó ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= x3 + 33 -x(x2 -1) -27 =0 ( tổng các lập phuong)
x =0
CX100%
a/ => 4x2 - 4x + 1 + 4x2 + 4x + 1 = 16
=> 8x2 = 14
=> x2 = 14/8
=> x = \(\frac{\sqrt{7}}{2}\) hoặc x = \(-\frac{\sqrt{7}}{2}\)
b/ => 6x2 - (6x2 - 11x - 10) = 17
=> 6x2 - 6x2 + 11x + 10 = 17
=> 11x = 7
=> x = 7/11
c/ => 2x(x + 5) - x2 - 5x = 0
=> 2x(x + 5) - x(x + 5) = 0
=> (x + 5)(2x - x) = 0
=> x(x + 5) = 0
=> x = 0
hoặc x + 5 = 0 => x = -5
Vậy x = 0 ; x = -5
d/ \(x^2+\frac{1}{x^2}+2x+\frac{2}{x}=-3\)
đề là như vầy hả
\(a;\frac{2x+1}{6-x}=-\frac{2x+1}{x-6}=-\frac{2x-12+13}{x-6}=-2-\frac{13}{x-6}\)
\(\Rightarrow13⋮\left(x-6\right)\)
\(\Rightarrow x-6\in\left(1;-1;13;-13\right)\)
\(\Rightarrow x\in\left(7;5;19;-7\right)\)
\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{4x^2+x}+2x-1\right)\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2+x-\left(2x-1\right)^2}{\sqrt{4x^2+x}-2x+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2+x-4x^2+4x-1}{\sqrt{4x^2+x}-2x+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{5x-1}{-x\cdot\sqrt{4+\dfrac{1}{x}}-2x+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{5-\dfrac{1}{x}}{-\sqrt{4+\dfrac{1}{x}}-2+\dfrac{1}{x}}\)
\(=\dfrac{5-0}{-\sqrt{4+0}-2+0}=\dfrac{5}{-4}=-\dfrac{5}{4}\)
\(2^x+3\cdot2^x=9\cdot2^9\)
\(\Rightarrow2^x\cdot\left(1+3\right)=9\cdot2^9\)
\(\Rightarrow2^x\cdot4=9\cdot2^9\)
\(\Rightarrow2^x=\dfrac{9\cdot2^9}{4}\)
\(\Rightarrow2^x=9\cdot2^7\)
Xem lại đề !
Ta có:
\(\frac{2}{3}-\frac{1}{3}.\left(x-\frac{3}{2}\right)-\frac{1}{2}.\left(2x+1\right)=5\)
\(\Rightarrow\frac{2}{3}-\frac{1}{3}x+\frac{1}{3}.\frac{3}{2}-x-\frac{1}{2}=5\)
\(\Rightarrow\frac{2}{3}-\left(\frac{1}{3}x+x\right)+\frac{1}{2}-\frac{1}{2}=5\)
\(\Rightarrow\frac{4}{3}x=\frac{2}{3}-5=-\frac{13}{3}\)
\(\Rightarrow x=-\frac{13}{3}:\frac{4}{3}=-\frac{13}{3}.\frac{3}{4}=-\frac{13}{4}\)
Vậy x=-13/4
a: \(\left[\left(10-x\right)\cdot2+51\right]:3-2=3\)
=>\(\left[2\left(10-x\right)+51\right]:3=5\)
=>\(\left[2\left(10-x\right)+51\right]=15\)
=>\(2\left(10-x\right)=15-51=-36\)
=>10-x=-36/2=-18
=>\(x=10-\left(-18\right)=10+18=28\)
b: \(\left(x-12\right)-15=20-\left(17+x\right)\)
=>\(x-12-15=20-17-x\)
=>\(x-27=3-x\)
=>\(2x=30\)
=>\(x=\dfrac{30}{2}=15\)
c: \(720-\left[41-\left(2x-5\right)\right]=2^3\cdot5\)
=>\(720-\left[41-2x+5\right]=8\cdot5=40\)
=>\(\left[41-2x+5\right]=720-40=680\)
=>-2x+46=680
=>-2x=680-46=634
=>\(x=\dfrac{634}{-2}=-317\)
\(x+\left(2x+1\right).2=137\)
\(x+4x+2=137\)
\(5x+2=137\)
\(5x=137-2\)
\(5x=135\)
\(x=27\)
\(x+\left(2x+1\right)\cdot2=137\)
\(x+4x+2=137\)
\(5x+2=137\)
\(5x=135\)
\(x=135:5\)
\(x=27\)
VẬY \(x=27\)
2(x-1)=6(10-x)
<=>2x-2=60-6x
<=>2x+6x=60+2
<=>8x=62
<=>x=62:8
<=>x=7,75
=> 2x - 2 = 60 - 6x
=> 2x + 6x = 2 + 60
=> 8x = 62
=> x = 7,75
\(^{\left(2x+1\right)^2-\left(x+2\right)^2-3x\left(x+2\right)=\left(2x+1\right)^2-\left(x+2\right)\left(x+2+3x\right)}\)
\(=\left(2x+1\right)^2-\left(x+2\right)\left(4x+2\right)=\left(2x+1\right)^2-2\left(x+2\right)\left(2x+1\right)\)
\(=\left(2x+1\right)\left(1-2x-4\right)=\left(2x+1\right)\left(-3-2x\right)=-\left(2x+1\right)\left(3+2x\right)\)
\(\left(2x+1\right)^2-\left(x+2\right)^2-3x\left(x+2\right)\)
\(=4x^2+4x+1-\left(x^2+4x+4\right)-3x^2-6x\)
\(=4x^2+4x+1-x^2-4x-4-3x^2-6x\)
\(=-6x-3\)
\(=-3\left(x+2\right)\)