C/m \(A=11^3+12^3+.....+1945^{13}\) chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=11^3+12^3+...+1945^3\)
Ta có: \(A=11^3+12^3+...+1945^3\)
\(=\left(12^3+14^3+...+1944^3\right)+\left(11^3+13^3+...+1945^3\right)\)
Do dãy \(11;13;...;1945\) có \(\frac{1945-11}{2}+1=968\) số hạng
\(\Rightarrow \left(11^3+13^3+...+1945^3\right)⋮2\) mà \(\left(12^3+14^3+...+1944^3\right)⋮2\)
\(\Rightarrow A⋮2\left(1\right)\)
Mặt khác:
\(A=\left(11^3+1945^3\right)+\left(12^3+1944^3\right)+...+\left(977^3+979^3\right)+978^3\)
\(=967.1956^3+978^3⋮3\)
\(\Rightarrow A⋮3\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow A⋮6\)
a) \(4^{13}+4^{14}+4^{15}+4^{16}=4^{13}\left(1+4\right)+4^{14}\left(1+4\right)=4^{13}.5+4^{14}.5=5\left(4^{13}+4^{14}\right)⋮5\Rightarrow dpcm\)
c) \(2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}\)
\(=2^{10}\left(1+2+2^2\right)+2^{13}\left(1+2+2^2\right)\)
\(=2^{10}.7+2^{13}.7=7\left(2^{10}+2^{13}\right)⋮7\Rightarrow dpcm\)
Câu c bạn xem lại đê
\(M=1+2+3+4+5+6+7+8+9+10+11+12+13+14\)
\(=\left(1+14\right)+\left(2+13\right)+\left(3+12\right)+...+\left(6+9\right)+\left(7+8\right)\)
\(=15+15+15+...+15+15\)
\(=15\times7=105\)
\(1+3+5+7+9+11+13\)
\(=\left(1+13\right)+\left(3+11\right)+\left(5+9\right)+7\)
\(=14+14+14+7=49\)
Ta có: \(105\div49=2\)dư \(7\)
Vậy \(M\)ko chia hết cho \(1+3+5+7+9+11+13\)
ko chia hết.Vì 1+2+3+.......+13 \(⋮\) 1+2+....+13 mà 14 ko\(⋮\) cho 1+2+.......+13
a, 11 + 112 + 113 + ... + 117 + 118
= (11 + 112) + (113 + 114) + ... + (117 + 118)
= 11(1 + 11) + 113(1 + 11) + ... + 117(1 + 11)
= 11.12 + 113.12 + .... + 117.12
= 12(11 + 113 + ... + 117) chia hết cho 12
b, 7 + 72 + 73 + 74
= (7 + 73) + (72 + 74)
= 7(1 + 72) + 72(1 + 72)
= 7.50 + 72.50
= 50(7 + 72) chia hết cho 50
c, 3 + 32 + 33 + 34 + 35 + 36
= (3 + 32 + 33) + (34 + 35 + 36)
= 3(1 + 3 + 32) + 34(1 + 3 + 32)
= 3.13 + 34.13
= 13(3 + 34) chia hết cho 13
Ta có :
A = 13! - 11! = 11! . 12 . 13 - 11! = 11! . (12 . 13 - 1) = 11! . 155 chia hết cho 155
b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)
=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)
=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)
=3+3^2.13+3^5.13+.........+3^58.13
=3.13.(3^2+3^5+....+3^58)
vi tich tren co thua so 13 nen tich do chia het cho 13
=
bai1
a) A=(31+32)+(33+34)+...+(359+360)
=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)
=3^1.(1+3)+...+3^59.(1+3)
=3^1.4+....+3^59.4
=4.(3^1+...+3^59)
vi tich tren co thua so 4 nen tich do chia het cho 4
Ta có: \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)=\left(n-1\right)\left(n+1\right)\)
Vì \(n\in Z\Rightarrow\left(n-1\right)n\left(n+1\right)\)là tích của ba số nguyên liên tiếp \(A'⋮3!\)
Hay \(n^3-n⋮6\). Nên \(\left(11^3-11\right)+\left(12^3-12\right)+...+\left(1945^3-1945\right)⋮6\)
\(\Rightarrow\left(11^3+12^3+...+1945^3\right)-\left(11+12+...+1945\right)⋮6\)
Mà
\(11+12+...+1945=\frac{1935\left(1945+11\right)}{2}=\frac{1935.1956}{2}=1935.978=1935.163.6⋮6\)
Do đó, suy ra \(11^3+12^3+...+1945^3⋮6\left(\text{đ}pcm\right)\)