K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 9 2020

a/

\(\overrightarrow{AN}+\overrightarrow{CM}-\overrightarrow{PB}=\frac{1}{2}\overrightarrow{AC}+\frac{1}{2}\overrightarrow{CB}-\frac{1}{2}\overrightarrow{AB}\)

\(=\frac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{CB}\right)+\frac{1}{2}\overrightarrow{BA}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{BA}=\overrightarrow{0}\)

b/

\(\overrightarrow{AP}+\overrightarrow{BM}+\overrightarrow{MP}=\overrightarrow{AP}+\overrightarrow{BP}=\overrightarrow{0}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Ta có: \(\overrightarrow {BC} ,\overrightarrow {PN} \) là hai vecto cùng hướng và \(\frac{1}{2}\left| {\overrightarrow {BC} } \right| = \left| {\overrightarrow {PN} } \right|\)

\( \Rightarrow \frac{1}{2}\overrightarrow {BC}  = \overrightarrow {PN} \)\( \Rightarrow \overrightarrow {AP}  + \frac{1}{2}\overrightarrow {BC}  = \overrightarrow {AP}  + \overrightarrow {PN}  = \overrightarrow {AN} \)

b) Ta có: \(\overrightarrow {MP} ,\overrightarrow {CA} \) là hai vecto cùng hướng và \(2\left| {\overrightarrow {MP} } \right| = \left| {\overrightarrow {CA} } \right|\)

\( \Rightarrow 2\overrightarrow {MP}  = \overrightarrow {CA} \)\( \Rightarrow \overrightarrow {BC}  + 2\overrightarrow {MP}  = \overrightarrow {BC}  + \overrightarrow {CA}  = \overrightarrow {BA} \)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Do M, N, P lần lượt là trung điểm của BC, CA, AB

\( \Rightarrow MN = \frac{{AB}}{2} = PB\) và MN // PB.

\( \Rightarrow \overrightarrow {PB}  = \overrightarrow {NM} \)

Ta có: \(\overrightarrow {PB}  + \overrightarrow {MC}  = \overrightarrow {NM}  + \overrightarrow {MC}  = \overrightarrow {NC} \)

Lại có: \(\overrightarrow {NC}  = \overrightarrow {AN} \) (do N là trung điểm của AC)

Vậy \(\overrightarrow {PB}  + \overrightarrow {MC}  = \overrightarrow {AN} \)

7 tháng 10 2019

\(\overrightarrow{AN}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}=\frac{\overrightarrow{AB}}{2}+\frac{\overrightarrow{AC}}{2}=\overrightarrow{AM}+\overrightarrow{AP}\)

\(\overrightarrow{AN}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}\)

\(\overrightarrow{BP}=\frac{\overrightarrow{BA}+\overrightarrow{BC}}{2}\)

\(\overrightarrow{CM}=\frac{\overrightarrow{CB}+\overrightarrow{CA}}{2}\)

\(\Rightarrow\overrightarrow{AN}+\overrightarrow{BP}+\overrightarrow{CM}=\frac{\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{BA}+\overrightarrow{CA}+\overrightarrow{BC}+\overrightarrow{CB}}{2}=\overrightarrow{0}\)

NV
23 tháng 9 2020

a/ \(\overrightarrow{AN}+\overrightarrow{BP}+\overrightarrow{CM}=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)+\frac{1}{2}\left(\overrightarrow{BC}+\overrightarrow{BA}\right)+\frac{1}{2}\left(\overrightarrow{CA}+\overrightarrow{CB}\right)\)

\(=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{BA}\right)+\frac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{CA}\right)+\frac{1}{2}\left(\overrightarrow{BC}+\overrightarrow{CB}\right)=\overrightarrow{0}\)

b/

Do MN là đường trung bình tam giác ABC \(\Rightarrow\overrightarrow{MN}=\frac{1}{2}\overrightarrow{AC}\)

\(\overrightarrow{AN}=\overrightarrow{AM}+\overrightarrow{MN}=\overrightarrow{AM}+\frac{1}{2}\overrightarrow{AC}=\overrightarrow{AM}+\overrightarrow{AP}\)

c/

\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{BC}+\frac{1}{2}\overrightarrow{CA}=\frac{1}{2}\overrightarrow{AC}+\frac{1}{2}\overrightarrow{CA}=\overrightarrow{0}\)

15 tháng 12 2020

Có vẻ không đúng.

Giả sử \(\overrightarrow{AB}+\overrightarrow{MB}+\overrightarrow{MA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{MB}+\left(\overrightarrow{MA}+\overrightarrow{AB}\right)=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{MB}+\overrightarrow{MB}=\overrightarrow{0}\)

\(\Leftrightarrow2\overrightarrow{MB}=\overrightarrow{0}\)

\(\Leftrightarrow M\equiv B\) (Vô lí)

15 tháng 12 2020

Đề đúng đó bạn ơi Hồng Phúc CTV

Đây là đề thi học kì năm ngoái của trường mình mà.

Giúp e những bài này với ạ1) Cho tam giác ABC. GỌI N, H, V là ba điểm thỏa mãn:\(\overrightarrow{NB} \)-2\(\overrightarrow{NC} \)=\(\overrightarrow{0} \)\(2\overrightarrow{HC}+\overrightarrow{HA}=\overrightarrow{0} \)\(\overrightarrow{VA}+\overrightarrow{VB}=\overrightarrow{0} \)b) chứng minh n,h,v thẳng hàng2) Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi G và H lần lượt là trọng tâm và trực tâm của tam giác ABC. Còn M là trung...
Đọc tiếp

Giúp e những bài này với ạ

1) Cho tam giác ABC. GỌI N, H, V là ba điểm thỏa mãn:

\(\overrightarrow{NB} \)-2\(\overrightarrow{NC} \)=\(\overrightarrow{0} \)

\(2\overrightarrow{HC}+\overrightarrow{HA}=\overrightarrow{0} \)

\(\overrightarrow{VA}+\overrightarrow{VB}=\overrightarrow{0} \)

b) chứng minh n,h,v thẳng hàng

2) Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi G và H lần lượt là trọng tâm và trực tâm của tam giác ABC. Còn M là trung điểm BC.

a) so sánh 2 vecto \(\overrightarrow{HA},\overrightarrow{MO} \)

b) Chứng minh rằng :

i) \(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=2\overrightarrow{HO} \)

ii)\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=3\overrightarrow{OG} \)

3)Cho tam giác ABC và một điểm M thỏa mãn hệ thức \(\overrightarrow{BM}=2\overrightarrow{MC} \). Gọi BN là trung tuyến của tam giác ABC và I là trung điểm BN.

Chứng Minh a)\(2\overrightarrow{MB}+\overrightarrow{MA}+\overrightarrow{MC}=4\overrightarrow{MI} \)

b) \(\overrightarrow{AI}+\overrightarrow{BM}+\overrightarrow{CN}=\overrightarrow{CI}+\overrightarrow{BN}+\overrightarrow{AM} \)

4)Cho tam giác ABC, , lấy các điểm M, N, P sao cho \(\overrightarrow{MA}+3\overrightarrow{MB}=6\overrightarrow{NP}-\overrightarrow{NC}=\overrightarrow{PC}+2\overrightarrow{PA}=\overrightarrow{0} \)

a) Biểu diễn \(\overrightarrow{AN} \) qua \(\overrightarrow{AM} \) và \(\overrightarrow{AP} \)

b)Chứng minh M,N,P thẳng hàng

 

0
HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

\(\begin{array}{l}A{B^2} + \overrightarrow {AB} .\overrightarrow {BC}  + \overrightarrow {AB} .\overrightarrow {CA}  = {\overrightarrow {AB} ^2} + \overrightarrow {AB} .\overrightarrow {BC}  + \overrightarrow {AB} .\overrightarrow {CA} \\ = \overrightarrow {AB} (\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CA} ) = \overrightarrow {AB} (\overrightarrow {AC}  + \overrightarrow {CA} ) = \overrightarrow {AB} .\overrightarrow 0  = 0.\end{array}\)