a)(x+1/3)2=1/4
b)(2.x+3)2=9/121
c)(3.x-1)3= -8/27
d) 4x+4x+2= 112
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)
\(ĐK:x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)
\(\Leftrightarrow4x^2-9=4x+12\)
\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)
\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
\(ĐK:x\ge5\)
\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)
\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)
\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)
ĐK:x>=1
\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)
\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)
\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
\(ĐK:x\ge3\)
\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)
\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)
\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}=0\) (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)
a) (x2-6xy+9y2):(3y-x)
= (x-3y)2:(3y-x)
=(3y-x)2:(3y-x)
= 3y-x
b) (8x3-1):(4x2+2x+1)
=[(2x)3-1]:(4x2+2x+1)
= (2x-1)(4x2+2x+1):(4x2+2x+1)
= 2x-1
c) (4x4-9):(2x2-3)
=(2x2-3)(2x2+3):(2x2-3)
=2x2+3
d) (8x3-27):(4x2+6x+9)
=(2x-3)(4x2+6x+9):(4x2+6x+9)
=2x-3
a) \(\left(x-3\right)^2-4=0\)
\(\left(x-3\right)^2=0+4\)
\(\left(x-3\right)^2=4\)
\(\left(x-3\right)^2=\pm4\)
\(\left(x-3\right)^2=\pm2^2\)
\(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
b) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)
\(4x^2+12x+9-4x^2+1=22\)
\(12x+10=22\)
\(12x=22-10\)
\(12x=12\)
\(x=1\)
c) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=16\)
\(16x^2-9-16x^2+40x-25=16\)
\(-34+40x=16\)
\(40x=16+34\)
\(40x=50\)
\(x=\frac{50}{40}=\frac{5}{4}\)
d) \(x^3-9x^2+27x-27=-8\)
\(x^3-9x^2+27x-27+8=0\)
\(x^3-9x^2+27x-19=0\)
\(\left(x^2-8x+19\right)\left(x-1\right)=0\)
Vì \(\left(x^2-8x+19\right)>0\) nên:
\(x-1=0\)
\(x=1\)
e) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)
\(x^3+2x^2+x+x^2+2x+1-x^2-3x^2=2\)
\(3x+1=2\)
\(3x=2-1\)
\(3x=1\)
\(x=\frac{1}{3}\)
b) ( 2x+3)^2 - (2x+1)(2x-1) =22
=> 4x2+12x+9-4x2+1=22
=> 12x=12
=>x=1
c) (4x+3)(4x-3) -(4x-5)^2 =16
=>16x2-9-16x2+40x-25=16
=>40x=50
=>x=4/5
a)\(\left(x-13\right)^2-4=0\\\left(x-13\right)^2=4\\ \left(x-13\right)^2=2^2\\ \Rightarrow\left\{{}\begin{matrix}x-13=2\\x-13=-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}15\\-11\end{matrix}\right.\)
vậy...
a, \(3\left(1-4x\right)\left(x-1\right)+4\left(3x-2\right)\left(x+3\right)=-27\)
\(\Rightarrow3\left(x-1-4x^2+4x\right)+4\left(3x^2+9x-2x-6\right)=-27\)
\(\Rightarrow15x-3-12x^2+12x^2+28x-24=-27\)
\(\Rightarrow43x=-27+24+3\Rightarrow x=0\)
Các câu còn lại làm tương tự! Phá tan tành hoa loa kèn nhà nó ra!
Chúc bạn học tốt!!!
1.A =( x-3)( x+3) + 15 - x2
A=X2-3X+3X+15-X3
A=15-X
2.B=(X -1) (X2+X+1) - X (X2+2) + 2X
B=X3+ X2+ X - X2 - X - 1 - X3 - 2X + 2X
B= -1
3.C=(2X - 1 ) (4X2 + 2X + 1) - X ( 8 X 2 + 1 ) + X
C=8X3 - 4X2 +4X2 - 2X +2 X - 1 - 8X22 - X + X
C=8X3 - 1 - 8X22
MK CHỈ LM ĐC TỚI ĐÓ THUI SAI CHỖ NÀO ĐỪNG TRÁCH VÌ MK YẾU PHẦN NÀY
Một. Khai triển vế trái của phương trình:
(x-3)(x+3) = x(x+3) - 3(x+3) = x^2 + 3x - 3x - 9 = x^2 - 9
Khai triển vế phải của phương trình:
(x-5)^2 = (x-5)(x-5) = x(x-5) - 5(x-5) = x^2 - 5x - 5x + 25 = x^2 - 10x + 25
Đặt hai cạnh bằng nhau:
x^2 - 9 = x^2 - 10x + 25
Trừ x^2 từ cả hai phía:
-9 = -10x + 25
Trừ 25 từ cả hai vế:
-34 = -10 lần
Chia cả hai vế cho -10:
x = 3,4
b. Khai triển vế trái của phương trình:
(2x+1)^2 - 4x(x-1) = (2x+1)(2x+1) - 4x^2 + 4x = 4x^2 + 2x + 2x + 1 - 4x^2 + 4x = 8x + 1
Đặt vế trái bằng 17:
8x + 1 = 17
Trừ 1 cho cả hai vế:
8x = 16
Chia cả hai vế cho 8:
x = 2
c. Khai triển vế trái của phương trình:
(3x-2)(3x+2) - 9(x-1)x = (9x^2 - 4) - 9x^2 + 9x - 9x = -4 + 9x
Đặt vế trái bằng 0:
-4 + 9x = 0
Thêm 4 vào cả hai bên:
9x = 4
Chia cả hai vế cho 9:
x = 4/9
d. Khai triển vế trái của phương trình:
(3-x)^3 - (x+3)^3 = (27 - 9x + x^2) - (x^3 + 9x^2 + 27) = 27 - 9x + x^2 - x^3 - 9x^2 - 27 = -x^3 - 8x^2 - 9x
Đặt vế trái bằng 36x^2 - 54x:
-x^3 - 8x^2 - 9x = 36x^2 - 54x
Cộng x^3 + 8x^2 + 9x vào cả hai vế:
0 = 37x^2 - 63x
Chia cả hai vế cho x:
0 = 37x - 63
Thêm 63 vào cả hai bên:
63 = 37 lần
Chia cả hai vế cho 37:
x = 63/37
a,
\(\left(x+\frac{1}{3}\right)^2=\frac{1}{4}\)
⇒ \(\left[{}\begin{matrix}x+\frac{1}{3}=\frac{1}{2}\\x+\frac{1}{3}=-\frac{1}{2}\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=\frac{3}{6}-\frac{2}{6}=\frac{1}{6}\\x=-\frac{3}{6}-\frac{2}{6}=-\frac{5}{6}\end{matrix}\right.\)
Vậy.....
b, \(\left(2x+3\right)^2=\frac{9}{121}\)
⇒ \(\left[{}\begin{matrix}2x+3=\frac{3}{11}\\2x+3=-\frac{3}{11}\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}2x=\frac{3}{11}-\frac{33}{11}=-\frac{30}{11}\\2x=-\frac{3}{11}-\frac{33}{11}=-\frac{36}{11}\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=-\frac{15}{11}\\x=-\frac{12}{11}\end{matrix}\right.\)
c, \(\left(3x-1\right)^3=-\frac{8}{27}\)
⇒ \(3x-1=-\frac{2}{3}\)
⇒ \(3x=-\frac{2}{3}+1=\frac{1}{3}\)
⇒ \(x=\frac{1}{9}\)
d, \(4^x+4^{x+2}=112\)
⇒ \(4^x.\left(1+16\right)=112\)
=> \(4^x.17=112\)
Chỗ này kì nè :33 bạn xem lại đềcoi
giúp mình với các bạn ơi