Cho tam giác ABC. BC=40CM, AH=45CM. Độ dài phân giác AD= 45CM. Tính AB, AC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ABCEHD
+) Kẻ AE là phân giác ngoài của góc BAC
Mà AD là phân giác của góc BAC nên AD vuông góc với AE => tam giác EAD vuông tại A
+) Áp dụng ĐL Pi - ta go trong tam giác vuông AHD có: DH = √AD2−AH2=√452−362=27 cm
+) Áp dụng hệ thức lượng trong tam giác vuông EAD có: AD2 = DH. DE => DE = AD2 / DH = 452/ 27 = 75 cm
+)Áp dụng tính chất tia phân giác trong và ngoài tam giác có: BDDC =ABAC =EBEC
Đặt BD = x (0 < x < 40) => CD = 40 - x. Ta có:
x40−x =75−x75+(40−x) (do EB = DE - BD; EC = DE + DC)
=> x. (115 - x) = (40 - x).(75 - x)
<=> 115x - x2 = 3000 - 115x + x2 <=> x2 - 115x + 1500 = 0
=> x = 100 (Loại) hoặc x = 15 (thoả mãn)
Vậy BD = 15 cm hoặc BD = 40 - 15 = 25 cm (Nếu ta đổi vị trí B và C cho nhau)
tự vẽ hình nhé =))
a/Ta có BC2 =729; AB2 =1296; AC2 = 2025
=> BC2 + AB2 =AC2
=>729+1296=2025 ( định lý Py ta go trog tam giác )
=> vậy tam giác ABC vuông tại C
Xét tam giác ABC có:
\(AC^2=45^2=2025\)
\(AB^2+BC^2=36^2+27^2=2025\)
\(\Rightarrow AC^2=AB^2+BC^2\left(=2025\right)\)
\(\Rightarrow\)Tam giác ABC vuông tại B (Định lí Py-ta-go đảo)
A B C D E
Áp dụng định lý đường phân giác trong tam giác, ta được:
\(\frac{AB}{AD}=\frac{BC}{DC}\Rightarrow\frac{AB}{BC}=\frac{AD}{DC}=\frac{2}{3}\Rightarrow\frac{AB}{2}=\frac{BC}{3}\)(1)
Lại ap dụng định lý đường phân giác trong tam giác, ta được:
\(\frac{AC}{AE}=\frac{BC}{EB}\Rightarrow\frac{AC}{BC}=\frac{AE}{EB}=\frac{5}{6}\Rightarrow\frac{AC}{5}=\frac{BC}{6}\)(2)
Từ (1) và (2) suy ra \(\frac{AB}{4}=\frac{AC}{5}=\frac{BC}{6}=\frac{45}{15}=3\)
Vậy độ dài các cạnh của tam giác ABC lần lượt là 12;15;18 (cm)
Hình bạn tự vẽ nhé
Xét tam giác ABC có CE là đường phân giác của góc ACB (gt)
\(\Rightarrow\frac{AE}{EB}=\frac{AC}{BC}\)( tính chất đường phân giác trong của tam giác )
\(\Rightarrow\frac{AC}{BC}=\frac{5}{6}\)( Vì\(\frac{AE}{EB}=\frac{5}{6}\))
\(\Rightarrow6AC=5BC\)
Xét tam giác ABC có đường phân giác BD của góc ABC(gt)
\(\Rightarrow\frac{AD}{DC}=\frac{AB}{BC}\)( tích chất của đường phân giác trong của tam giác )
\(\Rightarrow\frac{AB}{BC}=\frac{2}{3}\)( Vì \(\frac{AD}{DC}=\frac{2}{3}\))
\(\Rightarrow3AB=2BC\)
Theo bài ra ta có: \(\hept{\begin{cases}6AC=5BC\\3AB=2BC\end{cases}}\)và \(AB+BC+CA=45\)
\(\Rightarrow\hept{\begin{cases}\frac{AC}{5}=\frac{BC}{6}\\\frac{AB}{4}=\frac{BC}{6}\end{cases}}\)
\(\Rightarrow\frac{AB}{4}=\frac{AC}{5}=\frac{BC}{6}=\frac{AB+AC+BC}{4+5+6}=\frac{45}{15}=3\)
\(\Rightarrow\hept{\begin{cases}AB=3.4=12\left(cm\right)\\AC=3.5=15\left(cm\right)\\BC=3.6=18\left(cm\right)\end{cases}}\)
Vậy ...
Bài 1:
a: AB+AC=75-45=30(cm)
b: AB=(30+4):2=17(cm)
=>AC=13cm
\(S=17\cdot13=221\left(cm^2\right)\)
Bài 2:
a: BC=67-47=20(cm)
b: \(S=\dfrac{15\cdot20}{2}=15\cdot10=150\left(cm^2\right)\)
ABCEHD
+) Kẻ AE là phân giác ngoài của góc BAC
Mà AD là phân giác của góc BAC nên AD vuông góc với AE => tam giác EAD vuông tại A
+) Áp dụng ĐL Pi - ta go trong tam giác vuông AHD có: DH = √AD2−AH2=√452−362=27 cm
+) Áp dụng hệ thức lượng trong tam giác vuông EAD có: AD2 = DH. DE => DE = AD2 / DH = 452/ 27 = 75 cm
+)Áp dụng tính chất tia phân giác trong và ngoài tam giác có: BDDC =ABAC =EBEC
Đặt BD = x (0 < x < 40) => CD = 40 - x. Ta có:
x40−x =75−x75+(40−x) (do EB = DE - BD; EC = DE + DC)
=> x. (115 - x) = (40 - x).(75 - x)
<=> 115x - x2 = 3000 - 115x + x2 <=> x2 - 115x + 1500 = 0
=> x = 100 (Loại) hoặc x = 15 (thoả mãn)
Vậy BD = 15 cm hoặc BD = 40 - 15 = 25 cm (Nếu ta đổi vị trí B và C cho nhau)