cho A=\(\frac{2020}{9-x}\) với giá trị nguyên nào của x thì A có giá trị lớn nhất. tìm giá trị lớn nhất đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: Để A đạt giá trị lớn nhất
<=> \(\frac{2015}{9-x}\)đạt giá trị lớn nhất
<=> 9 - x đạt giá trị nhỏ nhất
<=> 9 - x = 1 <=> x = 8
Thay x = 8 vào biểu thức A, ta được
A = \(\frac{2015}{9-8}=\frac{2015}{1}=2015\)
Vậy Max của A = 2015 tại x = 8
mình nghĩ Edogawa Conan nên lý luận chỗ để \(\frac{2015}{9-x}\)đạt giá trị lớn nhất thì
<=> 9-x là ước nguyên dương nhỏ nhất của 8
lý luận như Edogawa Conan thì 9-x=-2015
Để A đạt giá trị lớn nhất thì 1000-trị tuyệt đối của x+5 = 1000
Suy ra x+5= 0
Vay x= 0-5 = -5
Chắc chắn
Ta có : \(\left|x+9\right|\ge0\forall x\inℤ\)
\(\Rightarrow1001-\left|x+9\right|\le1001\)
Dấu \(=\)xảy ra khi
\(\left|x+9\right|=0\)
\(x+9=0\)
\(x=-9\)
Vậy GTLN của A là \(1001\) khi \(x=-9\)
Cũng không chắc nữa!
A = 1001 − |x + 9| có GTLN
⇔ |x + 9| có GTNN
Mà |x + 9| ≥ 0 nên |x + 9| = 0
⇒x + 9 = 0 ⇒x = −9
Khi đó A = 1001 − 0 = 1001
Vậy GTLN của A là 1001 tại x = -9.
Biểu thức:
\(A=\frac{2020-x}{6-x}=\frac{2014+6-x}{6-x}=\frac{2014}{6-x}+1\)
Để A đạt giá trị lớn nhất:
thì \(\frac{2014}{6-x}\)đạt giá trị lớn nhất
<=> \(\frac{2014}{6-x}>0\) và \(6-x\)đạt giá trị bé nhất
=> \(6-x=1\Leftrightarrow x=5\)
Lúc đó A đạt giá trị lớn nhất là: \(maxA=\frac{2014}{6-5}+1=2015\)
\(A=\frac{2020}{9-x}\left(x\ne9\right)\)
Để A đạt GTLN thì 9-x bé nhất
=> 9-x=1
=> x=8
Vậy \(A_{max}=\frac{2020}{9-8}=2020\)tại x=8
Hok Tốt !!!!!!!!!!!!!!
\(A=\frac{2020}{9-x}\)
A đạt giá trị lớn nhất
\(\Leftrightarrow\frac{2020}{9-x}\) lớn nhất
\(9-x\) nhỏ nhất ( vì 2020 là hằng số )
Vì 9 - x khác 0
\(\Rightarrow9-x=1\)
\(x=9-1\)
\(x=8\)
\(A=\frac{2020}{9-x}=\frac{2020}{9-8}=2020\)
Vật Giá trị lớn nhất cả A là 2020 khi và chỉ khi x = 8