2x+1.22014=22015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{x+1}\cdot2^{2014}=2^{2015}\\ 2^{x+1}=2^{2015}:2^{2014}\\ 2^{x+1}=2\\ =>x+1=1\\ x=1-1\\ x=0\)
a) 89-(73-x) = 20
=> 73+x =89-20
=> 73+x=69
=> x=69-73
=> x=-4
b) (x+7)-25=13
=> x+7=13+25
=> x+7=38
=> x=38-7
=> x=31
c) 98-(x+4)=20
=> x+4=98-20
=> x+4=78
=> x=78-4
=> x=73
d) 140:(x-8)=7
=> x-8=140:7
=> x-8=20
=> x=20+8
=> x=28
e) 4(x+41)=400
=> x+41=400:4
=> x+41=100
=> x=100-41
=> x=59
f) x-[42+(-28)]=-8
=> x-14=-8
=> x=-8+14
=> x=6
a) \(5x-65=5.3^2 \\ 5x-65=45\\5x=45+65\\5x=110\\x=22\)
b) \(200-(2x+6)=4^3\\2x+6=200-4^3\\2x+6=136\\2x=130\\x=65\)
c) \(2(x-51)=2.2^3+20\\2(x-51)=16+20\\2(x-51)=36\\x-51=18\\x=51+18=69\)
d) \(135-5(x+4)=35\\5(x+4)=135-45\\5(x-4)=90\\x-4=18\\x=18+4=22\)
e) \((2x-4)(15-3x)=0\\2(x-2).3(5-x)=0\\(x-2)(5-x)=0\\ \left[ \begin{array}{l}x-2=0\\5-x=0\end{array} \right. \\ \left[ \begin{array}{l}x=2\\x=5\end{array} \right.\)
f) \(2^{x+1} . 2^{2014}=2^{2016} \\ (2^{x+1} . 2^{2014}):2^{2014}=2^{2016} :2^{2014} \\ 2^{x=1}=2^{2016-2014} \\2^{x+1}=2^2\\x+1=2\\x=1\)
g) \(15+(x-1)^3=43\\(x-1)^3=15-42\\(x-1)^3=-27\\(x-1)^3=(-3)^3\\x-1=-3\\x=-2\)
h) \(15-x=17+(-9)\\15-x=17-9\\15-x=8\\x=15-8\\x=7\)
i) \(|x-5|=|-7|+|-4|\\|x-5|=7+4\\|x-5|=11\\ \left[ \begin{array}{l}x-5=11\\x-5=-11\end{array} \right. \\ \left[ \begin{array}{l}x=16\\x=-6\end{array} \right.\)
k) \(|x-3|-12=-9+|-7|\\|x-3|-12=-9+7\\|x-3|-12=-2\\|x-3|=10 \\ \left[ \begin{array}{l}x-3=10\\x-3=-10\end{array} \right. \\ \left[ \begin{array}{l}x=13\\x=-7\end{array} \right.\)
c) 2 2016 . 2 x - 1 = 2 2015
2 x - 1 = 2 2015 : 2 2016
2 x - 1 = 2 2015 - 2016
2 x - 1 = 2 - 1
⇒ x – 1 = -1
x = -1 + 1
x = 0
`#3107`
\(A=1+2^1+2^2+2^3+...+2^{2015}\)
\(2A=2+2^2+2^3+2^4+...+2^{2016}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)
\(A=2+2^2+2^3+2^4+...+2^{2016}-1-2-2^2-2^3-...-2^{2015}\)
\(A=2^{2016}-1\)
Vậy, \(A=2^{2016}-1.\)
\(A=2^0+2^1+2^2+...+2^{2015}\)
\(2\cdot A=2^1+2^2+2^3+...+2^{2016}\)
\(A=2A-A=2^{2016}-2^0\)
\(A=2^{2016}-1\)
2x+1 . 22014 = 22015
<=> 2x+2015 = 22015
<=> x + 2015 = 2015
<=> x = 0
Vậy x = 0
Linz
\(2^{x+1}\cdot2^{2014}=2^{2015}\)
\(2^{\left(x+1+2014\right)}=2^{2015}\)
\(2^{\left(x+2015\right)}=2^{2015}\)
\(x+2015=2015\)
\(x=0\)