A=1-2+2^2-2^3+...-2^99+2^100.thu gọn A;tìm chữ số tận cùng của A
Giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(2A=2^{101}+2^{100}+...+2^2+2\)
\(\Leftrightarrow A=2^{100}-1\)
b: \(3B=3^{101}+3^{100}+...+3^2+3\)
\(\Leftrightarrow2B=3^{100}-1\)
hay \(B=\dfrac{3^{100}-1}{2}\)
c: \(4C=4^{101}+4^{100}+...+4^2+4\)
\(\Leftrightarrow3C=4^{101}-1\)
hay \(C=\dfrac{4^{101}-1}{3}\)
a) A =1+3+32+33+...+3100
3A = 3 + 32+33+...+3101
3A-A=( 3 + 32+33+...+3101)-(1+3+32+33+...+3100)
2A = 3101-1
A = \(\frac{3^{101}-1}{2}\)
Thùy An làm sai rùi
A = 2100 - 299 + 298 - 297 +...+ 22 - 2
=> 2A = 2101 - 2100+299 - 298+...+23-22
=> 2A+A= 2101 -2
=> \(A=\frac{2^{101}-2}{3}\)
phần B bn lm tương tự nha!
\(A=2+2^2+...+2^{99}+2^{100}\)
\(2A=2^2+2^3+...+2^{101}\)
\(2A-A=\left(2^2+2^3+....+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(A=2^{101}-2\)
A= 2+2^2+2^3+...+2^99+2^100
=>2A=2^2+2^3+2^4+...+2^100+2^101
=> 2A - A =(2^2+2^3+2^4+...+2^100+2^101)-(2+2^2+2^3+...+2^99+2^100)
=>A = 2^101-2
\(B=1^2+2^2+\cdot\cdot\cdot+100^2\)
\(\Rightarrow B=1\cdot\left(2-1\right)+2\cdot\left(3-1\right)+\cdot\cdot\cdot+100\cdot\left(101-1\right)\)
\(\Rightarrow B=\left(1\cdot2+2\cdot3+\cdot\cdot\cdot+100\cdot101\right)-\left(1+2+\cdot\cdot\cdot+100\right)\)
Đặt A = 1.2 + 2.3 + ... + 100.101
\(\Rightarrow3A=1\cdot2\cdot3+2\cdot3\cdot3+\cdot\cdot\cdot+100\cdot101\cdot3\)
\(\Rightarrow3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+\cdot\cdot\cdot+100\cdot101\cdot\left(102-99\right)\)
\(\Rightarrow3A=\left(1\cdot2\cdot3+\cdot\cdot\cdot+100\cdot101\cdot102\right)-\left(1\cdot2\cdot3+\cdot\cdot\cdot+99\cdot100\cdot101\right)\)
\(\Rightarrow3A=100\cdot101\cdot102\)
\(\Rightarrow A=100\cdot101\cdot34\)
\(\Rightarrow A=343400\)
\(\Rightarrow B=A-\left(1+2+\cdot\cdot\cdot+100\right)\)
\(\Rightarrow B=343400-\frac{101\cdot100}{2}\)
\(\Rightarrow B=343400-101\cdot50\)
\(\Rightarrow B=343400-5050\)
\(\Rightarrow B=338350\)
\(A=3+3^2+3^3+...+3^{100}+3^{101}\)
\(3A=3^2+3^3+3^4+...+3^{101}+3^{102}\)
\(3A-A=\left(3^2+3^3+3^4+...+3^{101}+3^{102}\right)-\left(3+3^2+3^3+...+3^{100}+3^{101}\right)\)
\(2A=3^{102}-3\)
\(A=\frac{3^{102}-3}{2}\)
Tớ chỉ làm được câu A thôi, bạn thông cảm. Với lại tớ không chắc đúng đâu.
=))
Lời giải:
a) \(A=1+3+3^2+3^3+...+3^{100}\)
\(\Rightarrow 3A=3+3^2+3^3+...+3^{101}\)
Trừ theo vế:
\(\Rightarrow 3A-A=(3+3^2+3^3+..+3^{101})-(1+3+3^2+...+3^{100})\)
\(2A=3^{101}-1\Rightarrow A=\frac{3^{101}-1}{2}\)
b) \(B=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(\Rightarrow 2B=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
Cộng theo vế:
\(\Rightarrow B+2B=2^{201}-2\)
\(\Rightarrow B=\frac{2^{101}-2}{3}\)
c) Ta có:
\(C=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)
\(\Rightarrow 3C=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)
Cộng theo vế:
\(C+3C=(3^{100}-3^{99}+3^{98}-....+3^2-3+1)+(3^{101}-3^{100}+3^{99}-....+3^3-3^2+3)\)
\(4C=3^{101}+1\Rightarrow C=\frac{3^{101}+1}{4}\)
a: \(3A=3+3^2+...+3^{101}\)
\(\Leftrightarrow2A=3^{101}-1\)
hay \(A=\dfrac{3^{101}-1}{2}\)
b: \(2B=2^{101}-2^{100}+...+2^3-2^2\)
\(\Leftrightarrow3B=2^{101}-2\)
hay \(B=\dfrac{2^{101}-2}{3}\)
c: \(3C=3^{101}-3^{100}+....+3^3-3^2+3\)
=>\(4C=3^{101}+1\)
hay \(C=\dfrac{3^{101}+1}{4}\)
A = 1 + 2 + 22 + 23 + ... + 299 + 2100 . (1)
\(\Rightarrow2A=2+2^2+2^3+...+2^{101}\) (2)
Trừ 2 vế của (1) và (2) cho nhau được \(A=2^{101}-1\)
Ta có: A = 1 + 2 + 22 + 23 + ... + 299 + 2100.
2A = 2 (1 + 2 + 22 + 23 + ... + 299 + 2100)
= \(2\cdot1+2\cdot2+2\cdot2^2+2\cdot2^3+...+2\cdot2^{99}+2\cdot2^{100}.\)
2A = \(2+2^2+2^3+2^4+...+2^{100}+2^{101}.\)
2A - A = \(\left(2+2^2+2^3+2^4+...+2^{100}+2^{101}\right)-\left(1+2+2^2+2^3+...+2^{100}\right)\)
A = \(2^{101}-1\).
Vậy A = 2101 - 1.