Cho tam giác ABC đều có AH là đường cao và M là trung điểm của cạnh AB. Vẽ BE,CF lần lượt vuông góc với đường thẳng MH( E,F thuộc đường thẳng MH. Chứng minh
a) tứ giác AMHC là hình thang cân
b) CE =BF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: HC vuông góc AI
IH vuông góc HM
=>góc AIH=góc MHC(1)
góc IAH=90 độ-góc ABD
góc HCM=90 độ-góc FBC
=>góc IAH=góc HCM(2)
Từ (1), (2) suy ra ΔAHI đồng dạng với ΔCMH
b: Kẻ CG//IK(G thuộc AB), CG cắt AD tại N
=>HM vuông góc CN
=>M là trựctâm của ΔHCN
=>NM vuông góc CH
=>NM//AB
=>NM//BG
=>N là trung điểm của CG
IK//GC
=>IH/GN=HK/NC
mà GN=NC
nên IH=HK
=>H là trung điểm của IK
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC
a) Xét tam giác ABH vuông tại H và tam giác ACH vuông tại H có:
AB=AC(tam giác ABC cân tại A)
AH: chung
Do đó:tam giác ABH= tam giác ACH(ch-cgv)
b)Xét tam giác BMH vuông tại M và tam giác CNH vuông tại N có:
BH=CH(tam giác ABH=tam giác ACH)
góc B=góc C(tam giác ABC cân tại A)
Do đó:tam giác BMH=tam giác CNH(ch-gn)
#Ở câu b bạn có thể chọn trường hợp ch-cgv cũng đc hjhj:)))<3#
c)bn cho thiếu dữ kiên nên mk k làm đc nhé tks
P/S: chúc bạn học tốt..........boaiiii>.< moa<3
a: ΔCAE cân tại C
mà CI là đường trung tuyến
nên CI\(\perp\)AE
Xét ΔACM vuông tại A có AI là đường cao
nên \(CI\cdot CM=CA^2\)
b: \(\widehat{BAE}+\widehat{CAE}=90^0\)
\(\widehat{HAE}+\widehat{CEA}=90^0\)
mà \(\widehat{CAE}=\widehat{CEA}\)
nên \(\widehat{BAE}=\widehat{HAE}\)
=>AE là phân giác của góc HAB
ΔCAE cân tại C
mà CI là đường trung tuyến
nên CI là phân giác của \(\widehat{ACB}\)
Xét ΔCAMvà ΔCEM có
CA=CE
\(\widehat{ACM}=\widehat{ECM}\)
CM chung
Do đó: ΔCAM=ΔCEM
=>\(\widehat{CAM}=\widehat{CEM}=90^0\) và MA=ME
=>ME\(\perp\)BC
mà AH\(\perp\)BC
nên ME//AH
Xét ΔIFA vuông tại I và ΔIME vuông tại I có
IA=IE
\(\widehat{IAF}=\widehat{IEM}\)
Do đó: ΔIFA=ΔIME
=>IF=IM
=>I là trung điểm của FM
Xét tứ giác AMEF có
I là trung điểm chung của AE và MF
=>AMEF là hình bình hành
mà MA=ME
nên AMEF là hình thoi
c: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(\dfrac{BC}{CA}=\dfrac{AB}{AH}\)
Xét ΔAHB có AE là tia phân giác của \(\widehat{HAB}\)
nên \(\dfrac{BE}{EH}=\dfrac{BA}{AH}\)
\(\dfrac{BE}{EH}=\dfrac{BA}{AH}\)
=>\(\dfrac{BE}{EH}=\dfrac{BC}{CA}\)
=>\(\dfrac{BE}{EH}=\dfrac{BC}{CE}\)
=>\(BE\cdot EC=EH\cdot BC\)
Hình bạn có thể tự vẽ ??
a, Ta có : Tam giác ABC đều, AH là đường cao => AH đồng thời là đường trung tuyến của tam giác ABC
=> H là trung điểm của BC => BH = 1/2 BC (1)
Mà M là trung điểm của AB => BM = 1/2 AB (2)
Lại có : AB = BC ( do tam giác ABC đều ) (3)
Từ (1),(2),(3) => BM = BH
=> Tam giác BMH cân tại B ( định nghĩa )
Mà góc B = 60 độ ( do tam giác ABC đều-gt)
=> BMH là tam giác đều
=> Góc MBH = góc MHB
Mà góc B = Góc ACB ( do tam giác ABC đều )
=> góc MHB = góc ACB
Mà 2 góc này ở vị trí đồng vị khi HC cắt MH, AC
=> MH//AC ( dấu hiệu nhận biết 2 đường thẳng song song )
Xét tứ giác AMHC, có :
MH//AC - cmt
=> Tứ giác AMHC là hình thang (định nghĩa)
Xét hình thang AMHC (MH//AC) , có
góc MAC = góc ACH ( do tam giác ABC đều -gt)
=> Hình thang AMHC là hình thang cân (định lí)
Vậy hình thang AMHC là hình thang cân
b, Ta có : BE, CF lần lượt vuông góc với đường thẳng MH
=> BE//CF ( quan hệ giữa tính vuông góc với tính song song)
=> góc EBH = góc HCF (2 góc so le trong)
Xét tam giác BEH và tam giác CHF,có :
HB=HC ( do H là trung điểm của BC-cmt)
góc EBH = góc HCF -cmt
góc EHB = góc FHC - 2 góc đối đỉnh
Do đó tam giác BEH = tam giác CFH (gcg)
=> BE = CF (2 góc tương ứng)
Xét tứ giác BEFC, có :
BE//CF -cmt
BE=CF - cmt
=> Tứ giác BEFC là hình bình hành ( định lí )
=> BF = CE (định lí )
Vậy BF=CE.