Với số nguyên nn bất kỳ, biểu thức n(3n - 2) - 3n(n + 2)n(3n−2)−3n(n+2) luôn chia hết cho bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: n(2n−3)−2n(n+1)n(2n−3)−2n(n+1) = 2n2−3n−2n2−2n2n2−3n−2n2−2n
= −5n−5n
Vì −5⋮5−5⋮5 => -5n ⋮⋮ 5
=> n(2n−3)−2n(n+1)n(2n−3)−2n(n+1) ⋮⋮ 5 với mọi n ∈ Z
Đây nhá bạn
\(n\left(3n-1\right)-3n\left(n-2\right)=3n^2-n-\left(3n^2-6n\right)=3n^2-n-3n^2+6n=5n\)
luôn chia hết cho \(5\)với mọi số nguyên \(n\).
a: =>\(n+2\in\left\{1;-1;7;-7\right\}\)
=>\(n\in\left\{-1;-3;5;-9\right\}\)
b: =>n-3+4 chia hết cho n-3
=>\(n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{4;2;5;1;7;-1\right\}\)
c: =>3n^3+n^2+9n^2-1-4 chia hết cho 3n+1
=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)
d: =>10n^2-10n+11n-11+1 chia hết cho n-1
=>\(n-1\in\left\{1;-1\right\}\)
=>\(n\in\left\{2;0\right\}\)
Ta có : n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= 2n2 - 2n2 - 3n - 2n
= -5n
Mà n nguyên nên -5n chia hết cho 5
a, Ta có
n(2n-3)-2n(n+1)=2n2-3n-2n2-2n
=-5n chia hết cho 5
=> DPCM
b, Ta có (2m-3)(3n-2)-(3m-2)(2n-3)
Lại có (2m-3)(3n-2)=-(3-2m)(3-2n)=(3-2m)(2n-3)
=> (2m-3)(3n-2)-(3m-2)(2n-3)=(2m-3)(3n-2)-(2m-3)(3-2n)=0
=> (2m-3)(3n-2)-(3m-2)(2n-3)=0
=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5
=> DPCM
\(A=n\left(3n-1\right)-3n\left(n-2\right)=3n^2-n-3n^2+6n\)
\(\Rightarrow A=5n\Rightarrow A⋮5\) \(\forall n\in Z\)
\(B=n\left(2n+5\right)-2n\left(n-2\right)=2n^2+5n-2n^2+4n\)
\(\Rightarrow B=9n\Rightarrow B⋮9\) \(\forall n\in Z\)
n( 3n - 2 ) - 3n( n + 2 )
= 3n2 - 2n - 3n2 - 6n
= -8n luôn chia hết cho ±1 ; ±2 ; ±4 ; ±8