K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

a) 9x2 - 36

=(3x)2-62

=(3x-6)(3x+6)

=4(x-3)(x+3)

b) 2x3y-4x2y2+2xy3

=2xy(x2-2xy+y2)

=2xy(x-y)2

c) ab - b2-a+b

=ab-a-b2+b

=(ab-a)-(b2-b)

=a(b-1)-b(b-1)

=(b-1)(a-b)

P/s đùng để ý đến câu trả lời của mình

18 tháng 6 2019

\(n^4+2n^3+2n^2+2n+1=\left(n^4+2n^3+n^2\right)+\left(n^2+2n+1\right)=\left(n^2+1\right)\left(n+1\right)^2\)

18 tháng 6 2019

Voi n=0 

=>n4+2n3+2n2+2n+1=1=12

25 tháng 9 2017

Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3

=> ĐPCM;

3 tháng 10 2019

A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6

16 tháng 7 2016

Số số hạng:

\(\left(2n-1-1\right)\div2+1=\frac{2n-2}{2}+1=\frac{2\times\left(n-1\right)}{2}+1=n-1+1=n\) (số hạng)

Tổng trên là:

\(\frac{\left(2n-1+1\right)\times n}{2}=\frac{2n\times n}{2}=n^2\)

16 tháng 7 2016

Bạn ơi đây là chứng minh của lớp 11 nhé,chứ không phải 6 đâu

9 tháng 8 2018

Giải: Chú ý vế trái (VT) có n số hạng, n = 1: VT = 1, n = 2: VT = 1 + 3…

  • Với n = 1: (1) ↔ 1 = 1²: mệnh đề này đúng. Vậy (1) đúng khi n = 1.
  • Giả sử (1) đúng khi n = k ↔ 1 + 3 + 5 + … + (2k – 1) = k² (2), ta chứng minh (1) cũng đúng khi n = k + 1 ↔ 1 + 3 + 5 + … + (2k – 1) + [2(k + 1)] = (k + 1)² (3)

Thật vậy: VT(3) = VT(2) + [2(k + 1) - 1]= VP(2) + [2k + 1]

                            = k² + 2k + 1 = (k + 1)²

                            = VP(3) (đpcm)

Theo phương pháp quy nạp, (1) đúng với mọi số nguyên dương n.

9 tháng 8 2018

Số số hạng của dãy số trên là:

( 2n - 1 - 1 ) : 2 +1 

= ( 2n - 2 ) : 2 + 1

= 2( n - 1 ) : 2 + 1

= n - 1 + 1

= n

Tổng của dãy số trên là:

( 2n - 1 + 1 ) . n : 2

= 2n.n : 2

= n.n

= n2