K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2020

                                                              Bài giải

A B C D E F H O O'

Ta có \(\widehat{DAE}=90^0-60^0=30^0\)

\(AD=AE(=AB) \)

\(\Rightarrow \triangle DAE\)cân tại A
\(\widehat{EDA}=\frac{180^0-30^0}{2}=75^0 \)

Nên \(\widehat{CDE}=15^0\)

Tương tự \(\triangle BEC\) cân tại \(B\)

Dễ chứng minh \(\triangle DAF=\triangle DCF\) (c.g.c)

\(\Rightarrow \widehat{DFC}=\widehat{DFA}=180^0-45^0-30^0=105^0\)

Hạ \(FH \perp DC\)

Thì dễ có \(\triangle DHF\) vuông cân tại \(H\)

\(\Rightarrow \widehat{ DFH}=45^0\) do đó \(HD=HO\)

\(\Rightarrow \widehat{HFC}=60^0\)

Tam giác \(HFC\) vuông tại \(H\) có \(\widehat{HFC}=60^0\)

Giả sử \(O'\) \)là trung điểm của\( FC\) thì \(\triangle HO'F\)đều

\(\Rightarrow HO'=HF=DH\)

\(\widehat{HDO'}=\frac{180^0-(60^0+90^0)}{2}=15^0=\widehat{CDE}\)

Nên\( D, E, O'\)thẳng hàng \(\Rightarrow O\) trùng \(O' \)

Hay\(O\) là trung điểm của \(CF\) nên \(OC=OF\)

3 tháng 9 2020

                                                                              Bài giải

Ta có DAE^=900−600=300

AD=AE(=AB)

⇒△DAE cân tại A

EDA^=1800−3002=750

Nên CDE^=150

Tương tự △BEC cân tại B


Dễ chứng minh △DAF=△DCF (c.g.c)

⇒DFC^=DFA^=1800−450−300=1050

Hạ FH⊥DC

Thì dễ có △DHF vuông cân tại H

⇒DFH^=450 do đó HD=HO

⇒HFC^=600

Tam giác HFC vuông tại H có HFC^=600

Giả sử O′ là trung điểm của FC thì 

△HO′F đều

⇒HO′=HF=DH

HDO′^=1800−(600+900)2=150=CDE^

Nên D,E,O′ thẳng hàng

⇒O trùng O′

Hay O là trung điểm của CF nên 

16 tháng 12 2021

a/ ˆDCE+ˆECF=180oDCE^+ECF^=180o

=> ˆECF=90oECF^=90o

Xét t/g DEC và t/g BFC có

EC = FC (GT)

ˆDCE=ˆBCF=90oDCE^=BCF^=90o

DC = BC (do ABCD là hình vuông)

=> t/g DEC = t/g BFC (c.g.c)

=> DE = BF (2 cạnh t/ứ(

b/ Xét t/g BEH và t/g DEC có

ˆBEH=ˆDECBEH^=DEC^ (đối đỉnh)

ˆEBF=ˆEDCEBF^=EDC^ (do t/g BFC = t/g DEC)

 ⇒ΔBEH∼ΔDEC⇒ΔBEH∼ΔDEC (g.g)

=> ˆBHE=ˆDCB=90oBHE^=DCB^=90o

=> DE⊥BFDE⊥BF

Xét t/g BDF có

DE ⊥ BF

BC ⊥ DF

DE cắt BC tại E

=> E là trực tâm t/g BDF

=> .... đpcm

c/ Xét t/g CEF có CE = CF ; M là trung điểm EF

=> CM ⊥ EF

=> ˆKMC=90oKMC^=90o

Tự cm OKMC làhcn

=> OC = KM => AO = KM

Mà AO // KM (cùng vuông góc vs BD)

=> AOMK là hbh

=> OM // AK

16 tháng 12 2021

😱😱😱😱😱 oh mai gót!

a: Xét ΔEAB và ΔFCD có

\(\widehat{EAB}=\widehat{FCD}\)

AB=CD

\(\widehat{EBA}=\widehat{FDC}\)

Do đó: ΔEAB=ΔFCD

6 tháng 11 2021

a

vì ABCD là hình bình hành

=>AB=CD và AB//CD

vì AB//CD=>góc ABE=góc CDF

vì AE//CF=>góc AEF=góc CFE

xét tam giác EAB và tam giác FCD có

góc ABE=góc CDF,góc AEF=góc CFE,AB=CD

=>tam giác EAB=tam giác FCD

b

vì ABCD là hình bình hành

=>o là trung điểm AC

vì tam giác EAB=tam giác FCD=>AE=CF   

xét tứ giác AFCE có

AE=CF,AE//CF

=>AFCE là hình bình hành

mà o là trung điểm AC

=>o là trung điểm EF=>E đối xứng với F qua O