Nghiệm của BPT \(\sqrt{2x+4}+\sqrt[3]{3x+1}< 3-\sqrt{\frac{2016}{2017}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow2\sqrt{\left(x-2\right)\left(x+2\right)}-6\sqrt{x-2}+\sqrt{x+2}-3=0\)
\(\Leftrightarrow2\sqrt{x-2}\left(\sqrt{x+2}-3\right)+\sqrt{x+2}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x-2}+1\right)\left(\sqrt{x+2}-3\right)=0\)
\(\Leftrightarrow\sqrt{x+2}-3=0\Rightarrow x=11\)
b/ ĐKXĐ: ....
Đặt \(\left\{{}\begin{matrix}\sqrt{x-2016}=a>0\\\sqrt{y-2017}=b>0\\\sqrt{z-2018}=a>0\end{matrix}\right.\)
\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}-\frac{a-1}{a^2}+\frac{1}{4}-\frac{b-1}{b^2}+\frac{1}{4}-\frac{c-1}{c^2}=0\)
\(\Leftrightarrow\frac{\left(a-2\right)^2}{a^2}+\frac{\left(b-2\right)^2}{b^2}+\frac{\left(c-2\right)^2}{c^2}=0\)
\(\Leftrightarrow a=b=c=2\Rightarrow\left\{{}\begin{matrix}x=2020\\y=2021\\z=2022\end{matrix}\right.\)
a/ ĐK: \(x\ge0\)
\(\Leftrightarrow\sqrt{3+x}=x^2-3\)
Đặt \(\sqrt{3+x}=a>0\Rightarrow3=a^2-x\) pt trở thành:
\(a=x^2-\left(a^2-x\right)\)
\(\Leftrightarrow x^2-a^2+x-a=0\)
\(\Leftrightarrow\left(x-a\right)\left(x+a+1\right)=0\)
\(\Leftrightarrow x=a\) (do \(x\ge0;a>0\))
\(\Leftrightarrow\sqrt{3+x}=x\Leftrightarrow x^2-x-3=0\)
d/ ĐKXĐ: ...
\(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)
\(\Leftrightarrow\sqrt{2x-3}-1+x^2+1-\sqrt{6x^2+1}\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^4+2x^2+1-6x^2-1}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)\left(x-2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}\right)=0\)
\(\Leftrightarrow x=2\) (phần trong ngoặc luôn dương với mọi \(x\ge\frac{3}{2}\))
\(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}=1-\frac{1}{\sqrt{2007}}=\frac{\sqrt{2007}-1}{\sqrt{2007}}\)
Ta có:
\(\frac{1-\sqrt{n}+\sqrt{n+1}}{1+\sqrt{n}+\sqrt{n+1}}=\frac{\left(1-\sqrt{n}+\sqrt{n+1}\right)^2}{\left(1+\sqrt{n}+\sqrt{n+1}\right)\left(1-\sqrt{n}+\sqrt{n+1}\right)}=\frac{2n+2-2\sqrt{n}+2\sqrt{n+1}-2\sqrt{n\left(n+1\right)}}{2\left(1+\sqrt{n+1}\right)}\)
\(=\frac{\left[2n+2-2\sqrt{n}+2\sqrt{n+1}-2\sqrt{n\left(n+1\right)}\right]\left(1-\sqrt{n+1}\right)}{2\left(1+\sqrt{n+1}\right)\left(1-\sqrt{n+1}\right)}=\frac{-2n\sqrt{n+1}+2n\sqrt{n}}{-2n}=\sqrt{n+1}-\sqrt{n}\)
Suy ra:
\(Q=\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2017}-\sqrt{2016}=\sqrt{2017}-\sqrt{2}< \sqrt{2017}-1=R\)
Vậy Q < R.
a, ĐK: \(x=2017\)
\(\sqrt{x-2017}>\sqrt{2017-x}\)
\(\Leftrightarrow\left\{{}\begin{matrix}2017-x\ge0\\x-2017>2017-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le2017\\x>2017\end{matrix}\right.\)
\(\Rightarrow S=\varnothing\)
Với mọi \(n\in N.\)ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}.\)Do đó
\(P=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}.=1-\frac{1}{\sqrt{2017}}=\frac{\sqrt{2017}-1}{\sqrt{2017}}.\)
1. Đợi chút t tìm cách ngắn gọn.
2. ĐK: \(\left\{{}\begin{matrix}2x^2+8x+6\ge0\\x^2-1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\le-3\\x\ge1\\x=-1\end{matrix}\right.\) (*)
BPT\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\3x^2+8x+5+2\sqrt{\left(2x^2+8x+6\right)\left(x^2-1\right)}\le\left(2x+2\right)^2\left(1\right)\end{matrix}\right.\)
Giải (1) \(\Leftrightarrow x^2-1-2\sqrt{\left(2x^2+8x+6\right)\left(x^2-1\right)}\ge0\)
\(\Leftrightarrow\sqrt{x^2-1}\left(\sqrt{x^2-1}-2\sqrt{2x^2+8x+6}\right)\ge0\)
TH1: \(\sqrt{x^2-1}=0\Leftrightarrow x=\pm1\) (tm)
TH2: \(x^2-1\ne0\)
\(\Leftrightarrow\sqrt{x^2-1}-2\sqrt{2x^2+8x+6}\ge0\)
\(\Leftrightarrow\sqrt{x^2-1}\ge2\sqrt{2x^2+8x+6}\)
\(\Leftrightarrow x^2-1\ge8x^2+32x+24\)
\(\Leftrightarrow7x^2+32x+25\le0\)
\(\Leftrightarrow-\frac{25}{7}\le x\le-1\) kết hợp đk (*) và đk để giải bpt
=>\(x=-1\)
Vậy \(x=\pm1\)
3. ĐK: \(x\ge\frac{4}{5}\)
\(BPT\Leftrightarrow\sqrt{5x-4}-\sqrt{3x-2}+\sqrt{4x-3}-\sqrt{2x-1}>0\)
\(\Leftrightarrow\frac{2x-2}{\sqrt{5x-4}+\sqrt{3x-2}}+\frac{2x-2}{\sqrt{4x-3}+\sqrt{2x-1}}>0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\sqrt{5x-4}+\sqrt{3x-2}}+\frac{1}{\sqrt{4x-3}+\sqrt{2x-1}}\right)>0\)
\(\Leftrightarrow x-1>0\) \(\Leftrightarrow x>1\)
Vậy \(x>1\)
ĐKXĐ: \(x\ge-2\)
Hàm \(f\left(x\right)=\sqrt{2x+4}+\sqrt[3]{3x+1}\) có \(f'\left(x\right)=\frac{1}{\sqrt{2x+4}}+\frac{1}{\sqrt[3]{\left(3x+1\right)^2}}>0\) với mọi x thuộc khoảng xác định nên hàm đồng biến
\(\Rightarrow\) Nghiệm của BPT là \([-2;a)\)
Trong đó a là nghiệm thực của pt: \(\sqrt{2x+4}+\sqrt[3]{3x+1}-3+\sqrt{\frac{2016}{2017}}=0\)
Chắc chắn rằng ngay cả người ra đề cũng không thể giải ra nghiệm chính xác của pt trên khi mà dạng của nó như dưới đây :)