Cho tứ giác ABCD biết \(\widehat{A}\)=480, \(\widehat{B}\)=200, \(\widehat{C}\)=1250 . Tính góc ngoài đỉnh D.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
góc C-góc D=200-180=20 độ
góc C+góc D=120 độ
=>góc C=(20+120)/2=70 độ và góc D=120-70=50 độ
góc B=200-70=130 độ
góc A=180-70=110 độ
Gọi góc ngoài đỉnh C là \(\widehat{C}'\)
Ta có: \(\widehat{C}+\widehat{C}'=180^o\)
\(\Rightarrow\widehat{C}=180^o-\widehat{C}'=180^o-102^o=78^o\)
Tổng của bốn góc trong tứ giác là:
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(\Rightarrow\widehat{D}=360^o-\left(\widehat{A}+\widehat{B}+\widehat{C}\right)\)
\(\Rightarrow\widehat{D}=360^o-\left(78^o+115^o+78^o\right)\)
\(\Rightarrow\widehat{D}=89^o\)
góc C=180-102=78 độ
góc D=360 độ-78 độ-115 độ-78 độ=89 độ
Gọi góc ngoài đỉnh B là x
Ta có:
$\widehat {B} + x = 180^0 $
`=>`$ \widehat {B} + 110^0 = 180^0$
`=>` $\widehat {B} = 70^0$
Xét tứ giác ABCD:
$\widehat {A} + \widehat {B} + \widehat {C} + \widehat {D}= 360^0$
`=>` $100^0 + 70^0 + 75^0 + \widehat {D} = 360^0$
`=>` $\widehat {D} = 115^0$
Vậy, $\widehat {D} = 115^0.$
Ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^{0}\)(Định lí tổng các góc trong tứ giác)
\(\Rightarrow\)\(\widehat{D}=360^{0}-(\widehat{A}+\widehat{B}+\widehat{C})\)
\(=360^{0}-(65^{0}+117^{0}+71^{0}) =107^{0}\)
Gọi \(\widehat{D_{1}}\) là góc ngoài tại đỉnh D của tứ giác ABCD. Ta có:
\(\widehat{D}+\widehat{D_{1}}=180^{0}\) (\(\widehat{D}\) và \(\widehat{D_{1}}\) là hai góc kề bù)
\(\Rightarrow\) \(\widehat{D_{1}}=180^{0}-\widehat{D}\)
\(=180^{0}-107^{0}=73^{0}\)
Vậy số đo góc ngoài tại đỉnh D của tứ giác ABCD là 730
Tứ giác ABCD có : \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(65^o+117^o+71^o+\widehat{D}=360^o\)
\(253^o+\widehat{D}=360^o\)
\(\widehat{D}=360^o-253^o=107^o\)
\(\Rightarrow\) Góc ngoài của \(\widehat{D}=180^o-107^o=73^o\)
Vậy số đo góc ngoài tại đỉnh D là \(73^o\)
\(\dfrac{A}{1}=\dfrac{B}{2}=\dfrac{C}{3}=\dfrac{D}{4}=\dfrac{A+B+C+D}{1+2+3+4}=\dfrac{360}{10}=36\)
\(\Rightarrow A=36^0;B=36.2=72^0;C=36.3=108^0;D=36.4=144^0\)
\(\widehat{D}=360^o-48^o-125^o-20^o=177^o\text{ do đó góc ngoài đỉnh D là:}3^o\)
Ta có : ^A + ^B + ^C + ^D = 3600 ( tổng 4 góc 1 tứ giác )
<=> 480 + 200 + 1250 + ^D = 3600
<=> ^D = 3600 - ( 480 + 200 + 1250 )
<=> ^D = 1670
^D + góc ngoài đỉnh D = 1800 ( kề bù )
=> góc ngoài đỉnh D = 1800 - ^D
= 1800 - 1670
= 130
#Khải sai rồi :v