với a+b+c=1 tính giá trị của P= a^2021+b^2021+c^2021
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(a+b+c=6\)
\(\Leftrightarrow\left(a+b+c\right)^2=36\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=36\)
Mà \(a^2+b^2+c^2=ab+bc+ca\)
Khi đó ta có
\(3\left(ab+bc+ca\right)=36\)
\(\Leftrightarrow ab+bc+ca=12\)
\(\Leftrightarrow\hept{\begin{cases}2ab+2bc+2ca=24\\2a^2+2b^2+2c^2=24\end{cases}}\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}}\Leftrightarrow a=b=c=\frac{6}{3}=2\) ( 1 )
Thay (1) vào C ta có
\(C=\left(1-2\right)^{2021}+\left(2-1\right)^{2021}+\left(2-2\right)^{2021}\)
\(=-1+1+0=0\)
Vậy ......................
oh no bài thứ nhất là dạng chứng minh cs đúng ko ,
ko thể nào là dạng tìm a,b,c đc-.-
Sửa lại đề: $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2021}$.
--------------
Lời giải:
\(\left\{\begin{matrix} a+b+c=2021\\ \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2021}\end{matrix}\right.\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0\Leftrightarrow (a+b)(\frac{1}{ab}+\frac{1}{c(a+b+c)})=0\)
\(\Leftrightarrow (a+b).\frac{c(a+b+c)+ab}{abc(a+b+c)}=0\)
\(\Leftrightarrow (a+b).\frac{(c+a)(c+b)}{abc(a+b+c)}=0\Leftrightarrow (a+b)(b+c)(c+a)=0\)
$\Leftrightarrow (2021-c)(2021-a)(2021-b)=0$
Do đó ít nhất 1 trong 3 số $a,b,c$ có 1 số có giá trị bằng $2021$
Ta có : \(a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)
\(T=\frac{a^{2021}+b^{2021}+c^{2021}}{\left(a+b+c\right)^{2021}}=\frac{b^{2021}+b^{2021}+b^{2021}}{\left(b+b+b\right)^{2021}}=\frac{3b^{2021}}{\left(3b\right)^{2021}}=\frac{3}{3^{2021}}=\frac{1}{3^{2020}}\)
Đề bài mình sửa lại : A = a2021 - b2021 + c2021 - (a - b + c)2021
Ta có \(\sqrt{a}-\sqrt{b}+\sqrt{c}=\sqrt{a-b+c}\)
\(\Leftrightarrow a+b+c-2\sqrt{ab}-2\sqrt{bc}+2\sqrt{ca}=a-b+c\)
\(\Leftrightarrow b-\sqrt{ab}-\sqrt{bc}+\sqrt{ca}=0\)
\(\Leftrightarrow\sqrt{b}\left(\sqrt{b}-\sqrt{a}\right)-\sqrt{c}\left(\sqrt{b}-\sqrt{a}\right)=0\)
\(\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right).\left(\sqrt{b}-\sqrt{a}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b=c\\b=a\end{matrix}\right.\)
Với b = c
A = a2021 - b2021 + c2021 - (a - b + c)2021
= a2021 - a2021
= 0
Tương tự với b = a ta được A = 0
Vậy A = 0
P=a2021+b2021+c2021
P=(a+b+c)2021
mà a+b+c = 1
=> P= 12021=1