cho:10^k-1 chia hết cho 19 với k>1 chứng minh rằng:10^2k-1 chia hết cho 19
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa lại đề là: Cho 10k - 1 chia hết cho 19
a) 10k - 1 chia hết cho 19 => 10k - 1 = 19n (n là số tự nhiên)
=> 10k = 19n + 1 => 102k = (10k)2 = (19n +1)2 = (19n +1)(19n+1) = 361n2 + 38n + 1
=> 102k - 1 = 361n2 + 38n + 1 - 1 = 361n2 + 38n chia hết cho 19 => 102k - 1 chia hết cho 19
b) Tường tự,
103k = (10k)3 = (19n + 1)3 = (19n +1)2.(19n +1) = (361n2 + 38n +1).(19n +1) = 6859n3 + 1083n2 + 57n + 1
=> 103k -1 = 6859n3 + 1083n2 + 57n chia hết cho 19
vậy 103k - 1 chia hết cho 19
hình như sai đề vì số là lũy thừa của 10 làm gì chia hết cho 19
Ta co : 10^k-1 chia het cho 19
=> 10^k-1=19n(n thuoc N)
=>10^k=19n+1
=>10^2k=(10^k)^2=(19n+1)^2=(19n+1)(19n+1)=362n^2+38n+1
=>10^2l-1=361n^2+38n+1-1=361n^2+38n chia het cho 19
=>10^2k-1 chia het cho 19
**** nhe
Cho 10k -1 chia hết cho 19 với k>1.Chứng minh rằng:
a,102k -1 chi hết cho 19
b, 103k-1 chia hết cho 19
a/ 10 ^2k - 1 = 10 ^ 2k - 10 ^k + 10 ^ k -1 = 10 ^k(10 ^ k - 1 ) + ( 10 ^ k - 1 ) chia hết cho 19. Bạn hay xem lại các tính chất
b/ 10^3k -1 = 10 ^ 3k - 10 ^k + 10^ k - 1 = 10 ^ k ( 10^2k - 1 ) + ( 10 ^k - 1) chia hết cho 19. xem lại bài a nha. h
nhớ tick nha
\(10^k-1\text{ chia hết cho 19 nên }10^k=19m+1\)
Theo đó mà làm.
Theo một tính chất cơ bản ta dễ có:
\(10^{2k}-1=\left(10^k\right)^2-1⋮10^k-1⋮19\)
Suy ra đpcm