Cho \(\sin\alpha=\frac{3}{5}\) . Tính cos , tan , cot \(\alpha\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(tana-5cota+4=0\Rightarrow tana-\dfrac{5}{tana}+4=0\)
\(\Rightarrow tan^2a+4tana-5=0\Rightarrow\left[{}\begin{matrix}tana=1\\tana=-5\end{matrix}\right.\)
\(A=\dfrac{4sina+2cosa}{3sina-cosa}=\dfrac{\dfrac{4sina}{cosa}+\dfrac{2cosa}{cosa}}{\dfrac{3sina}{cosa}-\dfrac{cosa}{cosa}}=\dfrac{4tana+2}{3tana-1}=\left[{}\begin{matrix}3\\\dfrac{9}{8}\end{matrix}\right.\)
1) \(cot\alpha=\sqrt[]{5}\Rightarrow tan\alpha=\dfrac{1}{\sqrt[]{5}}\)
\(C=sin^2\alpha-sin\alpha.cos\alpha+cos^2\alpha\)
\(\Leftrightarrow C=\dfrac{1}{cos^2\alpha}\left(tan^2\alpha-tan\alpha+1\right)\)
\(\Leftrightarrow C=\left(1+tan^2\alpha\right)\left(tan^2\alpha-tan\alpha+1\right)\)
\(\Leftrightarrow C=\left(1+\dfrac{1}{5}\right)\left(\dfrac{1}{5}-\dfrac{1}{\sqrt[]{5}}+1\right)\)
\(\Leftrightarrow C=\dfrac{6}{5}\left(\dfrac{6}{5}-\dfrac{\sqrt[]{5}}{5}\right)=\dfrac{6}{25}\left(6-\sqrt[]{5}\right)\)
1: \(cota=\sqrt{5}\)
=>\(cosa=\sqrt{5}\cdot sina\)
\(1+cot^2a=\dfrac{1}{sin^2a}\)
=>\(\dfrac{1}{sin^2a}=1+5=6\)
=>\(sin^2a=\dfrac{1}{6}\)
\(C=sin^2a-sina\cdot\sqrt{5}\cdot sina+\left(\sqrt{5}\cdot sina\right)^2\)
\(=sin^2a\left(1-\sqrt{5}+5\right)=\dfrac{1}{6}\cdot\left(6-\sqrt{5}\right)\)
2: tan a=3
=>sin a=3*cosa
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>\(\dfrac{1}{cos^2a}=1+9=10\)
=>\(cos^2a=\dfrac{1}{10}\)
\(B=\dfrac{3\cdot cosa-cosa}{27\cdot cos^3a+3\cdot cos^3a+2\cdot3\cdot cosa}\)
\(=\dfrac{2\cdot cosa}{30cos^3a+6cosa}=\dfrac{2}{30cos^2a+6}\)
\(=\dfrac{2}{3+6}=\dfrac{2}{9}\)
Lời giải:
a.
$\tan a+\cot a=2\Leftrightarrow \tan a+\frac{1}{\tan a}=2$
$\Leftrightarrow \frac{\tan ^2a+1}{\tan a}=2$
$\Leftrightarrow \tan ^2a-2\tan a+1=0$
$\Leftrightarrow (\tan a-1)^2=0\Rightarrow \tan a=1$
$\cot a=\frac{1}{\tan a}=1$
$1=\tan a=\frac{\cos a}{\sin a}\Rightarrow \cos a=\sin a$
Mà $\cos ^2a+\sin ^2a=1$
$\Rightarrow \cos a=\sin a=\pm \frac{1}{\sqrt{2}}$
b.
Vì $\sin a=\cos a=\pm \frac{1}{\sqrt{2}}$
$\Rightarrow \sin a\cos a=\frac{1}{2}$
$E=\frac{\sin a.\cos a}{\tan ^2a+\cot ^2a}=\frac{\frac{1}{2}}{1+1}=\frac{1}{4}$
vậy thì kết quả là
\(\sin2\alpha=-0.96\)
\(\)còn \(\cos\left(\alpha+\frac{\pi}{6}\right)\) thì đúng vì -(-0.8) mà sorry thiếu ngủ hôm qua -_-
a, Ta có: \(sin^2\alpha+cos^2\alpha=1\Leftrightarrow\left(\dfrac{3}{5}\right)^2+cos^2\alpha=1\Leftrightarrow cos\alpha=\pm\dfrac{4}{5}\)
Vậy đẳng thức có thể đồng thời xảy ra.
b, Ta có: \(1+cot^2\alpha=\dfrac{1}{sin^2\alpha}\Rightarrow1+cot^2\alpha=\dfrac{1}{\left(\dfrac{1}{3}\right)^2}\Rightarrow cot\alpha=\pm2\sqrt{2}\)
Hai đẳng thức không thể đồng thời xảy ra.
c, Ta có: \(tan\alpha\cdot cot\alpha=1\Rightarrow3\cdot cot\alpha=1\Rightarrow cot\alpha=\dfrac{1}{3}\)
Đẳng thức có thể đồng thời xảy ra.
Bài làm:
Ta có: \(\sin^2\alpha+\cos^2\alpha=1\)
\(\Leftrightarrow\frac{9}{25}+\cos^2\alpha=1\)
\(\Leftrightarrow\cos^2\alpha=\frac{16}{25}\)
\(\Rightarrow\cos\alpha=\frac{4}{5}\)
Từ đó ta dễ dàng tính được:
\(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{3}{4}\) ; \(\cot\alpha=\frac{\cos\alpha}{\sin\alpha}=\frac{4}{3}\)