Tìm các số tự nhiên x, y sao cho \(x^2+y⋮y^2+1\)và\(y^2+x⋮x^2+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x+15 là bội của x+3
\(\Rightarrow\)x+15\(⋮\)x+3
\(\Rightarrow\)x+3+12\(⋮\)x+3
x+3\(⋮\)x+3
\(\Rightarrow\)12\(⋮\)x+3
\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
\(\Rightarrow x\in\left\{-4;-2;-5;-1;-6;0;-7;1;-15;9\right\}\)
Vậy x\(\in\){-4;-2;-5;-1;-6;0;-7;1;-15;9}
b) (x+1).(y-2)=3
\(\Rightarrow\)x+1 và y-2 thuộc Ư(3)={1;-1;3;-3}
Có :
x+1 | 1 | -1 | 3 | -3 |
x | 0 | -2 | 2 | -4 |
y+2 | 3 | -3 | 1 | -1 |
y | 1 | -5 | -1 | -3 |
Vậy (x;y)\(\in\){(0;1);(-2;-5);(2;-1);(-4;-3)}
Câu c tương tự câu b
g) Ta có : (x,y)=5
\(\Rightarrow\hept{\begin{cases}x⋮5\\y⋮5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=5m\\y=5n\\\left(m,n\right)=1\end{cases}}\)
Mà x+y=12
\(\Rightarrow\)5m+5n=12
\(\Rightarrow\)5(m+n)=12
\(\Rightarrow\)m+n=\(\frac{12}{5}\)
Bạn có thể xem lại đề được không ạ? Vì đến đây 12 không chia hết cho 5 nhé! Phần h bạn nên viết lại đề vì ƯCLN=[x,y]=8 tớ không hiểu lắm...
2:
a: 5/x-y/3=1/6
=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)
=>\(\dfrac{30-2xy}{6x}=\dfrac{x}{6x}\)
=>30-2xy=x
=>x(2y+1)=30
=>(x;2y+1) thuộc {(30;1); (-30;-1); (10;3); (-10;-3); (6;5); (-6;-5)}
=>(x,y) thuộc {(30;0); (-30;-1); (10;1); (-10;-2); (6;2); (-6;-3)}
b: x/6-2/y=1/30
=>\(\dfrac{xy-12}{6y}=\dfrac{1}{30}\)
=>\(\dfrac{5xy-60}{30y}=\dfrac{y}{30y}\)
=>5xy-60=y
=>y(5x-1)=60
=>(5x-1;y) thuộc {(-1;-60); (4;15); (-6;-10)}(Vì x,y là số nguyên)
=>(x,y) thuộc {(0;-60); (1;15); (-1;-10)}
Để tìm các số tự nhiên x và y thỏa mãn phương trình (2x - 9)/(x - 2) + 1 = y, ta sẽ giải phương trình này.
Bước 1: Loại bỏ phân số trong phương trình bằng cách nhân cả hai vế của phương trình với (x - 2):
(x - 2) * [(2x - 9)/(x - 2) + 1] = y * (x - 2)
Bước 2: Rút gọn phân số và thu gọn phương trình:
2x - 9 + (x - 2) = y * (x - 2)
3x - 11 = y * (x - 2)
Bước 3: Giải phương trình để tìm x và y. Để làm điều này, chúng ta có thể thử các giá trị của x và kiểm tra các giá trị tương ứng của y. Dựa trên tính chất của phương trình, chúng ta có thể thấy rằng x phải lớn hơn 2, vì nếu x = 2, mẫu số sẽ bằng 0, gây ra một phép chia không hợp lệ.
Thử x = 3:
3 * 3 - 11 = y * (3 - 2) y = 2
Vậy, một cặp số tự nhiên thỏa mãn phương trình là x = 3 và y = 2.