cho hình thang ABCD có AB là đáy nhỏ 2 đường chéo vuông góc với nhau biết AC=16,BD=12.tính chiều cao của hình thang đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cách 1
Giả sử AB<CD; từ B kẻ đường thẳng//AC, cắt DC kéo dài tại E --> ABEC là hình bình hành vì có các cạnh đối // từng đôi một. Vì AC vuông góc với BD nên EB vuông góc với BD --> DE^2=BD^2+BE^2 =12^2 +16^2 =20^2 --> DE=20 cm. Mà DE=CD+CE và CE=AB ---> AB+CD=20cm
S(ABCD)= AC.BD/2=12.16/2= 96cm2
S(ABCD)= (AB+CD).h/2 =20h/2 =10h
10.h= 96 --> h= 9,6 cm
cách 2
Qua B kẻ đường thẳng song song với AC, cắt DC ở E. Gọi BH là đường cao của hình thang.
Ta có ABEC là hình bình hành (cặp cạnh tương ứng song song) =>BE = AC = 16cm
mà AC vuông góc với BD (gt) => BE vuông góc với BD
CÁCH 1 :
Áp dụng pytago vào tam giác vuông BDE =>DE = 20 cm ( tam giác 3:4:5 ).
Mặt khác ta có : BH.DE = BD.BE ( cùng = 2 lần diện tích tam giác BDE hay có thể sử dụng tam giác đồng dạng để suy ra điều này) => BH = 12.16/20 = 9,6 (cm)
CÁCH 2 :
sử dụng định lý :1/h^2=1/b^2 +1/c^2 => h = BH = 9,6 (cm)
cách 3
Gọi O là giao điểm của AC và BD
Hình thang có 2 đường chéo vuông góc với nhau nên nó là hình thoi
Độ dài 1 cạnh hình thoi
AB = sqrt(OA^2 + OB^2) = sqrt (8^2 + 6^2) = 10 cm
S(hình thoi) = AB*h = AC*BD/2
h = AC*BD(2AB) = 16*12/20 = 9,6 cm
bn chọn cách nào thì chọn nhưng nhớ k mk nha!
Câu 11.12.
Kẻ đường cao \(AH,BK\).
Do tam giác \(\Delta AHD=\Delta BKC\left(ch-gn\right)\)nên \(DH=BK\).
Đặt \(AB=AH=x\left(cm\right),x>0\).
Suy ra \(DH=\frac{10-x}{2}\left(cm\right)\)
Xét tam giác \(AHD\)vuông tại \(H\):
\(AD^2=AH^2+HD^2=x^2+\left(\frac{10-x}{2}\right)^2\)(định lí Pythagore)
Xét tam giác \(DAC\)vuông tại \(A\)đường cao \(AH\):
\(AD^2=DH.DC=10.\left(\frac{10-x}{2}\right)\)
Suy ra \(x^2+\left(\frac{10-x}{2}\right)^2=10.\frac{10-x}{2}\)
\(\Leftrightarrow x=2\sqrt{5}\)(vì \(x>0\))
Vậy đường cao của hình thang là \(2\sqrt{5}cm\).
Câu 11.11.
Kẻ \(AE\perp AC,E\in CD\).
Khi đó \(AE//BD,AB//DE\)nên \(ABDE\)là hình bình hành.
Suy ra \(AE=BD=15\left(cm\right)\).
Kẻ đường cao \(AH\perp CD\)suy ra \(AH=12\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AH\):
\(\frac{1}{AH^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AE^2}=\frac{1}{12^2}-\frac{1}{15^2}=\frac{1}{400}\)
\(\Rightarrow AC=20\left(cm\right)\)
\(S_{ABCD}=\frac{1}{2}AC.BD=\frac{1}{2}.15.20=150\left(cm^2\right)\),
Dựng hình bình hành \(ABEC\).
Khi đó \(E\in DC\).
Vì \(BD\perp AC\)mà \(AC//BE\)nên \(BE\perp BD\).
Kẻ \(BH\perp DE\).
Xét tam giác \(BED\)vuông tại \(B\)đường cao \(BH\):
\(\frac{1}{BH^2}=\frac{1}{BD^2}+\frac{1}{BE^2}\Leftrightarrow\frac{1}{4^2}=\frac{1}{5^2}+\frac{1}{BE^2}\Leftrightarrow BE=\frac{20}{3}\left(cm\right)\)
\(S_{ABCD}=\frac{1}{2}.AC.BD=\frac{1}{2}.BD.BE=\frac{1}{2}.5.\frac{20}{3}=\frac{50}{3}\left(cm^2\right)\)