Cho S =3^0+3^2+3^4+3^6+...+3^2002
Tìm chữ số tận cùng của S, giúp mình với , mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 30 + 31 + 32 + 33 + .... + 350
=> 3A = 31 + 32 + 33 + 34 + ... + 351
Khi đó 3A - A = (31 + 32 + 33 + 34 + ... + 351) - (30 + 31 + 32 + 33 + .... + 350)
=> 2A = 351 - 30
=> A = \(\frac{3^{51}-1}{2}\)
Khi đó A = \(\frac{3^{51}-1}{2}=\frac{3^3.3^{48}-1}{2}=\frac{27.\left(3^4\right)^{12}-1}{2}=\frac{27.\left(...1\right)^{12}-1}{2}\)
\(=\frac{\left(...7\right)-1}{2}=\frac{\left(...6\right)}{2}=\left(...3\right)\)
Vậy A tận cùng là 3
TL
S= ( 1+ 3+ 3^2+ 3^3+ 3^4+ 3^5+ 3^6+ 3^7+ 3^8+ 3^9)
3.S=3.( 1+ 3+ 3^2+ 3^3+ 3^4+ 3^5+ 3^6+ 3^7+ 3^8+ 3^9)
3S=3+3^2+3^3+....+3^10
3S-S=3+3^2+3^3+....+3^10-(1+ 3+ 3^2+ 3^3+ 3^4+ 3^5+ 3^6+ 3^7+ 3^8+ 3^9)
2S=3^10-1
S=3^10-1/2
HỌC TỐT NHÉ
a, Nhóm 2 số thành một cặp thì mỗi cặp đều chia hết cho 3
Ví dụ : 1+2 = 3
2^98 + 2^99 = 2^98.(1+2) = 3.2^98 chia hết cho 3
=> M chia hết cho 3
b, chữ số tận cùng của M là 5
Tk mk nha
\(A=2+2^2+2^3+......+2^{1000}\Rightarrow2A=2^2+2^3+2^4+......+2^{1001}\)
\(\Rightarrow2A-A=A=2^{1001}-2=\left(....2\right)-2=\left(.....0\right)\)
\(B=1+3^2+3^4+.........+3^{100}\Rightarrow9B=3^2+3^4+3^6+......+3^{102}\)
\(\Rightarrow9B-B=8B=3^{102}-1\Rightarrow B=\frac{3^{102}-1}{8}=\frac{\left(.....8\right)}{8}\)
=> B có tận cùng là 1 hoặc 6 nhưng Tổng B gồm 51 số hạng lẻ
=> B có tận cùng là 1
Bài làm:
Xét \(3^{4x}\) có chữ số tận cùng là 1 (x là số tự nhiên) vì:
\(3^{4x}=\left(3^4\right)^x=81^x=\left(...1\right)^x\)
Xét \(3^{4x+2}\) có chữ số tận cùng là 9 (x là số tự nhiên) vì:
\(3^{4x+2}=\left(3^4\right)^x.3^2=\left(...1\right)^x.9=\left(...9\right)^x\)
=> \(3^{4x}+3^{4x+2}=...0\) có chữ số tận cùng là 0
Ta có: \(S=3^0+3^2+3^4+3^6+...+3^{2002}\)
\(S=\left(3^0+3^{2002}\right)+\left(3^2+3^{2000}\right)+...+\left(3^{1000}+3^{1002}\right)\)
\(S=...0+...0+...+...0\)
\(S=...0\)
=> S có chữ số tận cùng là 0