Tìm P max biết P = -2x -2√x +3
Bạn nào giúp mk vs k hiểu sao P max = 3 đc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=-x^2-10y^2+6xy-2x+10y-3\)
\(=-x^2-9y^2-1+6xy-2x+6y-y^2+4y-4+2\)
\(=-\left(x-3y+1\right)^2-\left(y-2\right)^2+2\le2\)
Dấu \(=\)khi \(\hept{\begin{cases}x-3y+1=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=2\end{cases}}\).
ĐKXĐ: \(x\le3\)
\(P=\sqrt{3-x}-\left(3-x\right)+3=-\left(\sqrt{3-x}-\dfrac{1}{2}\right)^2+\dfrac{13}{4}\le\dfrac{13}{4}\)
\(P_{max}=\dfrac{13}{4}\) khi \(\sqrt{3-x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{11}{4}\)
Con bạn mk: Xinh, hơi cục, mê mấy anh 2k9 cực, thích mxh, mỗi tội hơi ngây ther thoi. Gu của nó cực kỳ cao
mik khuyên bn hãy nói với bff là trai đeo kính sẽ đẹp hơn và dễ lựa hơn
\(x^2+2x-2\)
\(=x^2+2x+4-6\)
\(=\left(x+2\right)^2-6\le-6\)
Dấu "=" xảy ra khi \(x+2=0\Leftrightarrow x=-2\)
Vậy Max C = -6 <=> x = - 2
tìm min chứ tìm max thì số to lắm bạn ạ
Để A đạt GTLN
=>x2 -2x đạt giá trị dương nhỏ nhất
=>x2-2x=1
=>x2-2x-1=0
=>x=$1-\sqrt{2};\sqrt{2}+1$1−√2;√2+1
Vậy A ko xảy ra GTLN
Để A đạt GTLN
=>x2 -2x đạt giá trị dương nhỏ nhất
=>x2-2x=1
=>x2-2x-1=0
=>x=\(1-\sqrt{2};\sqrt{2}+1\)
Vậy A ko xảy ra GTLN
Min của biểu thức này không tồn tại (nó chỉ tồn tại khi tam giác ABC là 1 tam giác suy biến nghĩa là 1 cạnh bằng 0)
Bài làm:
đk: \(x\ge0\)
Ta có: Vì x không âm
=> \(-2x-2\sqrt{x}\le0\left(\forall x\right)\)
=> \(-2x-2\sqrt{x}+3\le3\left(\forall x\right)\)
=> \(P\le3\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(x=0\)
Vậy P max = 3 khi x = 0