Cho A = 1/1x2 + 1/3x4 + 1/5x6 + ... + 1/99x100
B = 1/51x100 + 1/52x99 + ... + 1/99x52 + 1/100x51
Tính A/B
Làm ơn trả lời nhanh giúp mình ạ, ai đúng nhanh nhất mình tick luôn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)-\)\(\left(\frac{1}{5}-\frac{1}{6}\right)\)
1-1/6= 5/6
tích nhá
1/1x2 + 1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 + 1/6x7
=1/1-1/2+1/2-1/3+...-1/7
=1+(1/2-1/2+1/3-1/3+...+1/6-1/6)-1/7
=1 +0+0+...-1/7
=1-1/7
=6/7
một hình chữ nhật có chu vi 72cm chiều dài 15cm và chiều rộng 9cm thì hình chữ nhật trở thành hình vuông. Tính diện tích hình chữ nhật ban đầu
giải hộ mình nhé
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
Ta có B =\(\frac{1}{51.100}+\frac{1}{52.99}+...+\frac{1}{100.51}\)
=> 151B = \(\frac{151}{51.100}+\frac{151}{52.99}+...+\frac{151}{100.51}=\frac{1}{51}+\frac{1}{100}+\frac{1}{52}+\frac{1}{99}+...+\frac{1}{51}+\frac{1}{100}\)
\(=2\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\)
=> B = \(\frac{2}{151}.\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\)
Khi đó \(\frac{A}{B}=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{2}{151}.\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)}=\frac{1}{\frac{2}{151}}=\frac{151}{2}=75,5\)
\(M=\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+\frac{1}{9.10}\right)\)\(-\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\right)\)
\(M=\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}\right)\)\(-\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\right)\)
\(M=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{6}-\frac{1}{7}-\frac{1}{8}-\frac{1}{9}-\frac{1}{10}\)
\(M=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{2}{6}-\frac{2}{8}-\frac{2}{10}\)
\(M=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\)
\(M=1-\frac{1}{2}-\frac{2}{4}\)
\(M=1-\frac{1}{2}-\frac{1}{2}\)
\(M=0\)
HOK TỐT
1/1x2+1/2x3+1/3x4+..+1/9x10
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5+...-1/10
=1-1/10
=9/10
Ta có \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
Lại có B = \(\frac{1}{51.100}+\frac{1}{52.99}+...+\frac{1}{99.52}+\frac{1}{100.51}\)
=> 151B = \(\frac{151}{51.100}+\frac{151}{52.99}+...+\frac{151}{99.52}+\frac{151}{100.51}\)
=> 151B = \(\frac{1}{51}+\frac{1}{100}+\frac{1}{52}+\frac{1}{99}+...+\frac{1}{99}+\frac{1}{52}+\frac{1}{100}+\frac{1}{51}\)
=> 151B = \(2\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\)
=> B = \(\frac{2}{151}.\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\)
Khi đó \(\frac{A}{B}=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{2}{151}\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)}=\frac{1}{\frac{2}{151}}=\frac{151}{2}=75,5\)