Tìm GTNN của biểu thức:
\(\sqrt{\left(x-2011\right)^2+\left(x-1\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|2021-x\right|+\dfrac{1}{2}\left|4040-2x\right|\)
\(A=\left|2021-x\right|+\left|2020-x\right|\)
\(A=\left|2021-x\right|+\left|x-2020\right|\ge\left|2021-x+x-2020\right|=1\)
\(A_{min}=1\) khi \(2020\le x\le2021\)
3 câu này bạn áp dụng cái này nhé.
`a^2 >=0 forall a`.
`|a| >=0 forall a`.
`1/a` xác định `<=> a ne 0`.
a: P=(x+30)^2+(y-4)^2+1975>=1975 với mọi x,y
Dấu = xảy ra khi x=-30 và y=4
b: Q=(3x+1)^2+|2y-1/3|+căn 5>=căn 5 với mọi x,y
Dấu = xảy ra khi x=-1/3 và y=1/6
c: -x^2-x+1=-(x^2+x-1)
=-(x^2+x+1/4-5/4)
=-(x+1/2)^2+5/4<=5/4
=>R>=3:5/4=12/5
Dấu = xảy ra khi x=-1/2
Ở giữa là nhân hay cộng vậy bạn.
Nếu là nhân thì min bằng 0 vì đây là tích 2 số không âm.
Nếu là cộng: \(A=\left|x+2011\right|+\left|2012-x\right|\ge\left|2011+2012\right|=4023\)
và đẳng thức xảy ra, chẳng hạn khi \(x=2012\)
Đề không rõ ràng này tốt nhất thôi A à.
tý nữa lại sủa, tẹo nữa keo nhầm, kết luận làm được rồi không phải giải nữa.
A mới đưa ra được (.);(+) còn chia(/) và (-) nữa
A = \(\sqrt{\left(x-3\right)-2\sqrt{x-3}+1+2}\)
= \(\sqrt{\left(\sqrt{x-3}-1\right)^2+2}\)\(\ge\)\(\sqrt{0+2}\)=\(\sqrt{2}\)
''='' <=> x = 4
=> Min A = \(\sqrt{2}\)và x = 4
B = |x-2011| + |x-1|
TH1: x \(\le\)1
=> B = 2012 - 2x \(\ge\)2010 ''='' <=> x = 1
TH2: 1\(\le\)x\(\le\)2011
=> B = x - 1 + 2011 - x = 2010 với mọi x t/m đkiện
TH3: x \(\ge\)2011
=> B = 2x - 2012 \(\ge\)2010 ''='' <=> x = 2011
Vậy Min B = 2010 <=> 1\(\le\)x\(\le\)2011
A= \(|\sqrt{x^2}+\sqrt{1}-9|+|\sqrt{x^2}+\sqrt{1}-12|\)
A=\(|x+1-9|+|x+1-12|\)
A=\(|x-8|+|x-11|\)
TH1: x<0
=> A= (-x)-8 + (-x) -11
A=(-x-x)-(8+11)
A=-2x-19
TH2:x>0
=> A=x-8+x-11
A=(x+x)-(8+11)
A=2x-19
Tương tự x=0 sau đấy cậu KL nhé, phần sau mình lười
Áp dụng BĐT \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\):
\(\left|\sqrt{x^2+1}-9\right|+\left|\sqrt{x^2+1}-12\right|\)\(=\left|\sqrt{x^2+1}-9\right|+\left|12-\sqrt{x^2+1}\right|\)
\(\ge\left|\left(\sqrt{x^2+1}-9\right)+\left(12-\sqrt{x^2+1}\right)\right|=3\)
Vậy \(A_{min}=3\Leftrightarrow\left(\sqrt{x^2+1}-9\right)\left(12-\sqrt{x^2+1}\right)\ge0\)
\(TH1:\hept{\begin{cases}\sqrt{x^2+1}-9\ge0\\12-\sqrt{x^2+1}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+1\ge81\\x^2+1\le144\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2\ge80\\x^2\le143\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{80}\le x\le\sqrt{143}\\-\sqrt{80}\ge x\ge-\sqrt{143}\end{cases}}\)
\(TH2:\hept{\begin{cases}\sqrt{x^2+1}-9\le0\\12-\sqrt{x^2+1}\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+1\le81\\x^2+1\ge144\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2\le80\\x^2\ge143\end{cases}}\left(L\right)\)
\(\sqrt{\left(2011-x\right)^2+\left(x-1\right)^2}\ge\sqrt{\frac{1}{2}\left(2011-x+x-1\right)^2}=1005\sqrt{2}\)