K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

Ta có: \(\sqrt{2,7}\cdot\sqrt{1,2}\)

\(=\sqrt{2,7\cdot1,2}\)

\(=\sqrt{\frac{27}{10}\cdot\frac{6}{5}}\)

\(=\sqrt{\frac{81}{25}}=\sqrt{\left(\frac{9}{5}\right)^2}=\frac{9}{5}\)

28 tháng 8 2020

\(\sqrt{2,7}\cdot\sqrt{1,2}\)

\(=\sqrt{2,7\cdot1,2}\)

\(=\sqrt{\frac{27}{10}\cdot\frac{6}{5}}\)

\(=\sqrt{\frac{27}{5}\cdot\frac{3}{5}}\)

\(=\sqrt{\frac{81}{25}}\)

\(=\sqrt{\left(\frac{9}{5}\right)^2}\)

\(=\left|\frac{9}{5}\right|=\frac{9}{5}\)

28 tháng 8 2020

\(a\)

\(\sqrt{2,7}\)\(.\)\(\sqrt{1,2}\)

\(=\)\(\sqrt{2,7.1,2}\)

\(=\)\(\sqrt{3,24}\)

\(=\)\(1,8\)

\(b\)

\(\sqrt{85}.\sqrt{125}.\sqrt{68}\)

\(=\)\(\sqrt{85.125.68}\)

\(=\)\(\sqrt{722500}\)

\(=\)\(850\)

học tốt!!!

28 tháng 8 2020

\(\frac{\sqrt{13,5}}{\sqrt{4,5}}=\sqrt{\frac{13,5}{4,5}}=\sqrt{3}\)

28 tháng 8 2020

\(\sqrt{85}.\sqrt{125}.\sqrt{68}=\sqrt{85.125.68}=\sqrt{5.17.5.25.17.4}\)

\(=\sqrt{5^2.25.17^2.4}=\sqrt{5^2}.\sqrt{25}.\sqrt{17^2}.\sqrt{4}=5.5.17.2=850\)

20 tháng 3 2018

a. (x√13+√5)(√7−x√3)=0(x13+5)(7−x3)=0

⇔x√13+√5=0⇔x13+5=0 hoặc √7−x√3=07−x3=0

+ x√13+√5=0⇔x=−√5√13≈−0,62x13+5=0⇔x=−513≈−0,62

+ √7−x√3=0⇔x=√7√3≈1,537−x3=0⇔x=73≈1,53

Vậy phương trình có nghiệm x = -0,62 hoặc x = 1,53.

b. (x√2,7−1,54)(√1,02+x√3,1)=0(x2,7−1,54)(1,02+x3,1)=0

⇔x√2,7−1,54=0⇔x2,7−1,54=0 hoặc √1,02+x√3,1=01,02+x3,1=0

+ x√2,7−1,54=0⇔x=1,54√2,7≈0,94x2,7−1,54=0⇔x=1,542,7≈0,94

+ √1.02+x√3,1=0⇔x=−√1,02√3,1≈−0,571.02+x3,1=0⇔x=−1,023,1≈−0,57

Vậy phương trình có nghiệm x = 0,94 hoặc x = -0,57


23 tháng 8 2016

Ta có: \(A=\sqrt{2012}-\sqrt{2011}=\frac{1}{\sqrt{2012}+\sqrt{2011}}< \frac{1}{\sqrt{2011}+\sqrt{2010}}\)

\(=\sqrt{2011}-\sqrt{2010}< \sqrt{2011}.\sqrt{2010}=B\)

Vậy A<B

14 tháng 8 2020

a) \(\sqrt{2,5.2560}=\sqrt{25.256}=\sqrt{25}.\sqrt{256}=5.16=80\)

b) \(\sqrt{3,5}.\sqrt{2,5}.\sqrt{7}.\sqrt{\frac{1}{5}}=\sqrt{\frac{7}{2}}.\sqrt{\frac{5}{2}}.\sqrt{7}.\sqrt{\frac{1}{5}}\)

\(=\sqrt{\frac{7}{2}.\frac{5}{2}.7.\frac{1}{5}}=\sqrt{\frac{49}{4}}=\frac{7}{2}\)

c) \(\sqrt{40}.\sqrt{12,1}.\sqrt{0,09}=\sqrt{40.12,1}.\sqrt{0,09}\)

\(=\sqrt{4.121}.\sqrt{9.0,01}=\sqrt{4}.\sqrt{121}.\sqrt{9}.\sqrt{0,01}\)

\(=2.11.3.0,1=6,6\)

27 tháng 10 2016

Ta thấy:

\(\sqrt{40+2}< \sqrt{49}< 7\) (1)

\(\sqrt{40}>\sqrt{36}>6\) (2)

\(\sqrt{2}>\sqrt{1}>1\) (3)

Từ (2) và (3)

\(\sqrt{40}+\sqrt{2}>6+1>7\) (4)

Từ (1) và (4)

\(\Rightarrow\sqrt{40+2}< \sqrt{40}+\sqrt{2}\)

Vậy \(\sqrt{40+2}< \sqrt{40}+\sqrt{2}\)

2 tháng 11 2016

- Cảm ơn bạn nhiều =))

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

\(a)\sqrt {2250}  \approx 47,434;\,\,\,\,\,\,b)\sqrt {12}  \approx 3,461;\,\,\,\,\,\,\,c)\sqrt 5  \approx 2,236\,\,\,\,\,\,\,\,\,d)\sqrt {624}  \approx 24,980\)