K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2018

8 tháng 1 2017

Đáp án A.

Xét phương trình hoành độ giao điểm của (C) và (d):

3 tháng 11 2019

Đáp án B

Hàm bậc 4 trùng phương có ba điểm cực trị  ⇒ a b < 0 ⇒ 9 m − 4 < 0 ⇔ m − 4 < 0 ⇔ m < 4

Áp dụng công thức giải nhanh ba điểm cực trị tạo thành tam giác đều thì:

24 a + b 3 = 0 ⇔ 24.9 + m − 4 3 = 0 ⇔ m = − 2

Vậy giá trị  m 0 gần giá trị -1 nhất

23 tháng 8 2017

Gọi với  là điểm cần tìm.

Gọi  tiếp tuyến của (C)  tại M ta có phương trình.

 

 

Gọi 

Khi đó tạo với hai trục tọa độ tam  giác OAB  có trọng tâm là

 

Do G  thuộc đường thẳng  4x+y=0 nên 

(vì A; B không trùng O nên   ) 

Vì x0>-1 nên chỉ chọn 

Chọn A.

24 tháng 2 2019

Chọn D.

Phương pháp:

Giải phương trình hoành độ giao điểm, tìm giao điểm của hai đồ thị.

Dựa vào công thức trọng tâm, xác định m.

Cách giải:

Phương trình hoành độ giao điểm của d và (C) là

Để d cắt (C) tại hai điểm phân biệt A, B thì (*) có 2 nghiệm phân biệt khác 1

19 tháng 3 2019

Đáp án D

Phương trình hoành độ giao điểm của  C và  d

x x − 1 = m − x ⇔ x ≠ 1 x 2 − m x + m = 0    * .

Để  C cắt  d  tại hai điểm phân biệt ⇔ *  có hai nghiệm phân biệt khác 1 ⇔ m > 4 m < 0 .  

Khi đó, gọi điểm A x 1 ; m − x 1  và B x 2 ; m − x 2  là giao điểm của đồ thị C  và d .

⇒ O A = 2 x 1 2 − 2 m . x 1 + m 2 = 2 x 1 2 − m x 1 + m + m 2 − 2 m = m 2 − 2 m O B = 2 x 2 2 − 2 m . x 2 + m 2 = 2 x 2 2 − m x 2 + m + m 2 − 2 m = m 2 − 2 m  

Khoảng cách từ O đến AB bằng

h = d O ; d = m 2 ⇒ S Δ A B C = 1 2 . h . A B = m 2 2 . A B  

Ta có

S Δ A B C = a b c 4 R ⇔ R = a b c 4. S Δ A B C = O A . O B . A B 2. h . A B = O A . O B 2. h ⇔ 4 2 . m 2 = O A . O B ⇔ O A 2 . O B 2 = 16 m 2

Khi đó m 2 − 2 m 2 = 16 m 2 ⇔ m 2 − 2 m = 4 m m 2 − 2 m = − 4 m ⇔ m = 0 m = − 2 m = 6 .  

Kết hợp với điều kiện m > 4 m < 0 ,  ta được m = − 2 m = 6  là giá trị cần tìm

31 tháng 12 2019

Đáp án B.

Phương trình hoành độ giao điểm của (C) và d : x − 2 x − 1 = − x + m  

⇔ x ≠ 1 x − 2 = ( − x + m ) ( x − 1 ) ⇔ x ≠ 1 f ( x ) = x 2 − m x + m − 2 = 0 ( * )  

Để (C) và d cắt nhau tại hai điểm phân biệt A, B khi và chỉ khi phương trình (*) có hai nghiệm phân biệt x 1 , x 2  khác 1

⇔ f ( 1 ) = 1 2 − m + m − 2 ≠ 0 Δ = - m 2 − 4 ( m − 2 ) > 0 ⇔ − 1 ≠ 0 m 2 − 4 m + 8 m > 0 ⇔ m ∈ ℝ .

Mặt khác OAB là tam giác nên  O ∈ d  hay m ≠ 0  .

Gọi A ( x 1 ; − x 1 + m )  và B ( x 2 ; − x 2 + m )  . Suy ra O A = 2 x 1 2 − 2 m x 1 + m 2 O B = 2 x 2 2 − 2 m x 2 + m 2  

Do x 1 , x 2  là hai nghiệm của phương trình (*) nên x 1 2 − m x 1 = 2 − m x 2 2 − m x 2 = 2 − m  

Khi đó   O A = 2 ( 2 − m ) + m 2 = m 2 − 2 m + 4 O B = 2 ( 2 − m ) + m 2 = m 2 − 2 m + 4

Từ giả thiết ta có :

2 m 2 − 2 m + 4 = 1 ⇔ m 2 − 2 m + 4 = 2 ⇔ m ( m − 2 ) = 0 ⇔ m = 0 m = 2

Đối chiếu với điều kiện ta được m=2 thỏa mãn.

11 tháng 3 2019

14 tháng 3 2018

Chọn C