cho y=(2x+1)/(x-1) có (C). biết m=m0 là giá trị để (C) cắt d:y=mx+m-1 tại 2 điểm A,B sao cho OAB là tam giác có trọng tâm thuộc d1:x+y-2=0 . giá trị gần m0 là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Xét phương trình hoành độ giao điểm của (C) và (d):
Đáp án B
Hàm bậc 4 trùng phương có ba điểm cực trị ⇒ a b < 0 ⇒ 9 m − 4 < 0 ⇔ m − 4 < 0 ⇔ m < 4
Áp dụng công thức giải nhanh ba điểm cực trị tạo thành tam giác đều thì:
24 a + b 3 = 0 ⇔ 24.9 + m − 4 3 = 0 ⇔ m = − 2
Vậy giá trị m 0 gần giá trị -1 nhất
- Gọi với là điểm cần tìm.
- Gọi ∆ tiếp tuyến của (C) tại M ta có phương trình.
- Gọi
- Khi đó ∆ tạo với hai trục tọa độ tam giác OAB có trọng tâm là
- Do G thuộc đường thẳng 4x+y=0 nên
(vì A; B không trùng O nên )
- Vì x0>-1 nên chỉ chọn
Chọn A.
Chọn D.
Phương pháp:
Giải phương trình hoành độ giao điểm, tìm giao điểm của hai đồ thị.
Dựa vào công thức trọng tâm, xác định m.
Cách giải:
Phương trình hoành độ giao điểm của d và (C) là
Để d cắt (C) tại hai điểm phân biệt A, B thì (*) có 2 nghiệm phân biệt khác 1
Đáp án D
Phương trình hoành độ giao điểm của C và d là
x x − 1 = m − x ⇔ x ≠ 1 x 2 − m x + m = 0 * .
Để C cắt d tại hai điểm phân biệt ⇔ * có hai nghiệm phân biệt khác 1 ⇔ m > 4 m < 0 .
Khi đó, gọi điểm A x 1 ; m − x 1 và B x 2 ; m − x 2 là giao điểm của đồ thị C và d .
⇒ O A = 2 x 1 2 − 2 m . x 1 + m 2 = 2 x 1 2 − m x 1 + m + m 2 − 2 m = m 2 − 2 m O B = 2 x 2 2 − 2 m . x 2 + m 2 = 2 x 2 2 − m x 2 + m + m 2 − 2 m = m 2 − 2 m
Khoảng cách từ O đến AB bằng
h = d O ; d = m 2 ⇒ S Δ A B C = 1 2 . h . A B = m 2 2 . A B
Ta có
S Δ A B C = a b c 4 R ⇔ R = a b c 4. S Δ A B C = O A . O B . A B 2. h . A B = O A . O B 2. h ⇔ 4 2 . m 2 = O A . O B ⇔ O A 2 . O B 2 = 16 m 2
Khi đó m 2 − 2 m 2 = 16 m 2 ⇔ m 2 − 2 m = 4 m m 2 − 2 m = − 4 m ⇔ m = 0 m = − 2 m = 6 .
Kết hợp với điều kiện m > 4 m < 0 , ta được m = − 2 m = 6 là giá trị cần tìm
Đáp án B.
Phương trình hoành độ giao điểm của (C) và d : x − 2 x − 1 = − x + m
⇔ x ≠ 1 x − 2 = ( − x + m ) ( x − 1 ) ⇔ x ≠ 1 f ( x ) = x 2 − m x + m − 2 = 0 ( * )
Để (C) và d cắt nhau tại hai điểm phân biệt A, B khi và chỉ khi phương trình (*) có hai nghiệm phân biệt x 1 , x 2 khác 1
⇔ f ( 1 ) = 1 2 − m + m − 2 ≠ 0 Δ = - m 2 − 4 ( m − 2 ) > 0 ⇔ − 1 ≠ 0 m 2 − 4 m + 8 m > 0 ⇔ m ∈ ℝ .
Mặt khác OAB là tam giác nên O ∈ d hay m ≠ 0 .
Gọi A ( x 1 ; − x 1 + m ) và B ( x 2 ; − x 2 + m ) . Suy ra O A = 2 x 1 2 − 2 m x 1 + m 2 O B = 2 x 2 2 − 2 m x 2 + m 2
Do x 1 , x 2 là hai nghiệm của phương trình (*) nên x 1 2 − m x 1 = 2 − m x 2 2 − m x 2 = 2 − m
Khi đó O A = 2 ( 2 − m ) + m 2 = m 2 − 2 m + 4 O B = 2 ( 2 − m ) + m 2 = m 2 − 2 m + 4
Từ giả thiết ta có :
2 m 2 − 2 m + 4 = 1 ⇔ m 2 − 2 m + 4 = 2 ⇔ m ( m − 2 ) = 0 ⇔ m = 0 m = 2
Đối chiếu với điều kiện ta được m=2 thỏa mãn.