(2x-3/2) . ( 2x + 1) > 0
ai giả hội mk đi mk đang cần rất gấp T_T
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
PT $\Leftrightarrow (4x^2-4x+1)-3|2x-1|+2=0$
$\Leftrightarrow (2x-1)^2-3|2x-1|+2=0$
$\Leftrightarrow |2x-1|^2-3|2x-1|+2=0$
$\Leftrightarrow (|2x-1|-1)(|2x-1|-2)=0$
$\Rightarrow |2x-1|=1$ hoặc $|2x-1|=2$
$\Leftrightarrow 2x-1=\pm 1$ hoặc $2x-1=\pm 2$
$\Rightarrow x\in \left\{0; 1; \frac{3}{2}; \frac{-1}{2}\right\}$
\(\left(2x-1\right)^8=\left(2x-1\right)^{10}\\\)
Mà: chỉ có 18=110 ; (-1)8=(-1)10 ; 08=010
Vậy có 3 TH:
TH1: 2x - 1= 1 <=> x= 1
TH2: 2x - 1= -1 <=>x=0
TH3: 2x -1 = 0 <=> x= 1/2
Vậy : \(x=\left\{0;\frac{1}{2};1\right\}\)
3.|x+1|=2x-3 =>3(x+1)=2x-3 hoặc 3.(-x-1)=2x-3 =>3x+3=2x-3 -3x-3=2x-3 =>3x-2x=-3-3 -3x-2x=3-3 =>x=-6 x=0
\(2-\sqrt{x^2+2x+9}=2x+3\)
\(\Rightarrow\sqrt{x^2+2x+9}=-\left(2x+1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}-\left(2x+1\right)\ge0\\x^2+2x+9=\left[-\left(2x+1\right)\right]^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ge-\frac{1}{2}\\x^2+2x+9=4x^2+4x+1\end{matrix}\right.\)
\(\Rightarrow4x^2+4x+1-x^2-2x-9=0\)
\(\Rightarrow3x^2+2x-8=0\)
\(\Rightarrow3x^2+6x-4x-8=0\)
\(\Rightarrow3x\left(x+2\right)-4\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(3x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\left(KTMĐK\right)\\x=\frac{4}{3}\left(TMĐK\right)\end{matrix}\right.\)
Vậy nghiệm của phương trình là 4/3
Bài 9 : Tìm x, biết :
a, (x - 2)(x - 3) + (x - 2) - 1 = 0
\(\Leftrightarrow\left(x-2\right)\left(x-3+1\right)-1=0\)
\(\Leftrightarrow\left(x-2\right)^2-1=0\)
\(\Leftrightarrow\left(x-2+1\right)\left(x-2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy x ={1; 3}
b, (x + 2)2 - 2x(2x + 3) = (x + 1)2
\(\Leftrightarrow\left(x+2\right)^2-\left(x+1\right)^2-2x\left(2x+3\right)=0\)
\(\Leftrightarrow\left(x+2+x+1\right)\left(x+2-x-1\right)-2x\left(2x+3\right)=0\)
\(\Leftrightarrow2x+3-2x\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(1-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\1-2x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy \(x=\left\{-\frac{3}{2};\frac{1}{2}\right\}\)
c, 6x3 + x2 = 2x
\(\Leftrightarrow6x^3+x^2-2x=0\)
\(\Leftrightarrow x\left(6x^2+x-2\right)=0\)
\(\Leftrightarrow x\left(6x^2+4x-3x-2\right)=0\)
\(\Leftrightarrow x\left[2x\left(3x+2\right)-\left(3x+2\right)\right]=0\)
\(\Leftrightarrow x\left(3x+2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+2=0\\2x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\frac{2}{3}\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy \(x=\left\{0;-\frac{2}{3};\frac{1}{2}\right\}\)
Lời giải:
a)
\(f(0)=\frac{-0}{2}+3=3\)
$f(1)=\frac{-1}{2}+3=\frac{5}{2}$
$f(-1)=\frac{-(-1)}{2}+3=\frac{7}{2}$
$f(2)=\frac{-2}{2}+3=2$
$f(6)=\frac{-6}{2}+3=0$
$f(\frac{1}{2})=\frac{-\frac{1}{2}}{2}+3=\frac{11}{4}$
b)
\(f(x)=2x-3\Rightarrow f(x+1)=2(x+1)-3=2x-1\)
Do đó: \(f(x+1)-f(x)=2x-1-(2x-3)=2\)
c)
\(f(2)=3.2-9=-3\)
\(f(-2)=3(-2)-9=-15\)
\(g(0)=3-2.0=3\)
\(g(3)=3-2.3=-3\)
`1,[(-3).3+5]-26=-2x-3`
`=>(-9+5)-26=-2x-3`
`=>-4-26=-2x-3`
`=>-30=-2x-3`
`=>-2x=-27`
`=>x=27/2`
Vậy `x=27/2`
`2)-[(-35)-3]=2x-2`
`=>-(-38)=2x-2`
`=>38=2x-2`
`=>2x=40`
`=>x=20`
Vậy `x=20`
1) \(\left[\left(-3\right)\cdot3+5\right]-26=-2x-3\\ \Rightarrow-9+5-26=-2x-3\\ \Rightarrow-2x=-9+5-26+3\\ \Rightarrow-2x=-27\\ \Rightarrow x=\dfrac{27}{2}\)
Vậy \(x=\dfrac{27}{2}\)
2) \(-\left[\left(-35\right)-3\right]=2x-2\\ \Rightarrow2x-2=-\left(-38\right)\\ \Rightarrow2x=38+2\\ \Rightarrow2x=40\\ \Rightarrow x=20\)
Vậy \(x=20\)
ta có (2x - \(\frac{3}{2}\)) . (2x + 1) > 0
mà 2x + 1 là số lẻ
=> 2x - \(\frac{3}{2}\) = 0
=> 2x = 0 + \(\frac{3}{2}\)
=> 2x = \(\frac{3}{2}\)
=> x = \(\frac{3}{2}\) : 2
=> x = \(\frac{3}{2}\) . \(\frac{1}{2}\)
=> x = \(\frac{3}{4}\)(T/M)
HỌC TỐT
\(\left(2x-\frac{3}{2}\right).\left(2x+1\right)>0\Leftrightarrow4x+2x-3x-\frac{3}{2}>0\Leftrightarrow3x>\frac{3}{2}\Leftrightarrow x>\frac{1}{2}\)