K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 1 2022

1c (2 câu kia em tự giải)

Kẻ đường cao AH \(\Rightarrow\) AH cố định

Do \(\widehat{MAF}\) và \(\widehat{MCF}\) cùng nhìn MF dưới 1 góc vuông nên tứ giác MAFC nội tiếp

\(\Rightarrow\widehat{AFM}=\widehat{ACM}\) (cùng chắn AM)

\(\Rightarrow\Delta_VFME\sim\Delta_VCAB\left(g.g\right)\) với tỉ số đồng dạng \(k=\dfrac{AM}{AH}\)

\(\Rightarrow S_{MEF}=k^2.S_{ABC}\Rightarrow S_{MEF-min}\) khi \(k_{min}\)

Mà trong tam giác vuông AHM ta có \(AH\le AM\Rightarrow k\ge1\Rightarrow k_{min}=1\) khi M trùng H

Hay diện tích MEF min khi M là chân đường cao từ A xuống BC

NV
18 tháng 1 2022

undefined

25 tháng 3 2018

Cho tam giác ABC vuông cân tại A.Gọi D là 1 điểm bất kì trên cạnh BC ( D khác B và C).Và nằm trên cùng 1 nửa mặt phẳng BC và điểm A.Qua A vẽ đường thẳng vuông góc với AD cắt Bx tại M và cắt Cy tại N.Chứng minh :

a) 2 tam giác : AMB=ADC

b) A là trung điểm của MN.

25 tháng 5 2020

a.Ta có : ΔABC vuông cân tại A (gt)

Mà MB⊥BC,NC⊥BC

→ˆMBA=ˆACD=45 độ (Tính chất tam giác vuông cân)

Lại có : AD⊥MN,AB⊥AC

→ˆMAB+ˆBAD=ˆBAD+ˆDAC(=90độ)

→ˆMAB=ˆDAC

Mặt khác AB=AC→ΔMAB=ΔDAC(g.c.g)

→AM=AD,BM=DC

b.Tương tự câu a ta chứng minh được AN=AD,CN=BD

→AM=AN→A là trung điểm MN

c.Từ a,b →BC=BD+DC=CN+BM

d.Ta có : AM=AD,AD⊥MN→ΔAMD vuông cân tại A

Tương tự ΔAND vuông cân tại A

→ˆAMD=ˆAND=45độ→ΔDMN vuông cân tại D